
Package: photobiology (via r-universe)
August 23, 2024

Type Package

Title Photobiological Calculations

Version 0.11.3

Date 2024-08-23

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Definitions of classes, methods, operators and functions
for use in photobiology and radiation meteorology and
climatology. Calculation of effective (weighted) and
not-weighted irradiances/doses, fluence rates, transmittance,
reflectance, absorptance, absorbance and diverse ratios and
other derived quantities from spectral data. Local maxima and
minima: peaks, valleys and spikes. Conversion between
energy-and photon-based units. Wavelength interpolation.
Astronomical calculations related solar angles and day length.
Colours and vision. This package is part of the
'r4photobiology' suite, Aphalo, P. J. (2015)
<doi:10.19232/uv4pb.2015.1.14>.

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports stats, grDevices, polynom (>= 1.4-1), tibble (>= 3.1.6),
stringr (>= 1.4.0), lubridate (>= 1.9.3), plyr (>= 1.8.9),
dplyr (>= 1.1.4), tidyr (>= 1.3.1), splus2R (>= 1.3-3), zoo (>=
1.8-12), rlang (>= 1.1.4)

Suggests knitr (>= 1.48), rmarkdown (>= 2.27), testthat (>= 3.2.1),
roxygen2 (>= 7.3.2), lutz (>= 0.3.2), covr

LazyLoad yes

LazyData yes

ByteCompile true

URL https://docs.r4photobiology.info/photobiology/,

https://github.com/aphalo/photobiology

BugReports https://github.com/aphalo/photobiology/issues

1

https://doi.org/10.19232/uv4pb.2015.1.14
https://docs.r4photobiology.info/photobiology/
https://github.com/aphalo/photobiology
https://github.com/aphalo/photobiology/issues

2 Contents

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Repository https://aphalo.r-universe.dev

RemoteUrl https://github.com/aphalo/photobiology

RemoteRef HEAD

RemoteSha 8969138ea181fbb145c9f4345e4868f9370c86d7

Contents
photobiology-package . 8
A.illuminant.spct . 10
A2T . 11
absorbance . 12
absorptance . 15
add_attr2tb . 18
Afr2T . 21
any2T . 23
as.calibration_mspct . 24
as.calibration_spct . 25
as.chroma_mspct . 26
as.chroma_spct . 27
as.cps_mspct . 28
as.cps_spct . 29
as.filter_mspct . 30
as.filter_spct . 32
as.generic_mspct . 33
as.generic_spct . 36
as.matrix-mspct . 36
as.object_mspct . 37
as.object_spct . 39
as.raw_mspct . 40
as.raw_spct . 41
as.reflector_mspct . 42
as.reflector_spct . 44
as.response_mspct . 45
as.response_spct . 46
as.solar_date . 47
as.solute_mspct . 48
as.solute_spct . 50
as.source_mspct . 51
as.source_spct . 53
as_energy . 55
as_quantum . 55
as_quantum_mol . 56
as_tod . 57

Contents 3

average_spct . 58
beesxyzCMF.spct . 58
black_body.spct . 59
c . 60
calc_multipliers . 60
calc_source_output . 61
ccd.spct . 62
checkTimeUnit . 63
check_spct . 64
check_spectrum . 67
check_w.length . 68
ciev10.spct . 69
ciev2.spct . 69
ciexyzCC10.spct . 70
ciexyzCC2.spct . 71
ciexyzCMF10.spct . 72
ciexyzCMF2.spct . 73
class_spct . 74
clean . 74
clear.spct . 79
clip_wl . 80
collect2mspct . 81
color_of . 83
compare_spct . 85
cone_fundamentals10.spct . 86
convertTfrType . 88
convertThickness . 89
convertTimeUnit . 90
convolve_each . 91
copy_attributes . 91
cps2irrad . 92
D2.UV653 . 93
D2_spectrum . 94
D65.illuminant.spct . 95
day_night . 96
defunct . 100
despike . 101
diffraction_single_slit . 108
dim.generic_mspct . 109
div-.generic_spct . 110
div_spectra . 110
drop_user_cols . 112
e2q . 113
e2qmol_multipliers . 115
e2quantum_multipliers . 115
enable_check_spct . 116
energy_as_default . 117
energy_irradiance . 117

4 Contents

energy_ratio . 119
eq_ratio . 120
ET_ref . 123
Extract . 126
Extract_mspct . 128
e_fluence . 129
e_fraction . 131
e_irrad . 135
e_ratio . 138
e_response . 141
FEL_spectrum . 144
findMultipleWl . 145
find_peaks . 145
find_spikes . 146
find_wls . 148
fit_peaks . 149
fluence . 151
format.solar_time . 154
format.tod_time . 154
formatted_range . 155
fscale . 155
fshift . 161
generic_mspct . 166
getFilterProperties . 167
getHowMeasured . 169
getIdFactor . 170
getInstrDesc . 171
getInstrSettings . 171
getKType . 172
getMspctVersion . 173
getMultipleWl . 173
getNormalized . 174
getScaled . 175
getSoluteProperties . 176
getSpctVersion . 178
getTimeUnit . 178
getWhatMeasured . 179
getWhenMeasured . 180
getWhereMeasured . 182
get_attributes . 183
get_peaks . 185
green_leaf.spct . 186
head_tail . 187
illuminance . 189
insert_hinges . 191
insert_spct_hinges . 192
integrate_spct . 192
integrate_xy . 193

Contents 5

interpolate_spct . 194
interpolate_spectrum . 195
interpolate_wl . 196
irrad . 198
irradiance . 201
irrad_extraterrestrial . 203
is.generic_mspct . 204
is.generic_spct . 205
is.old_spct . 206
is.solar_time . 207
is.summary_generic_spct . 207
is.waveband . 208
isValidInstrDesc . 209
isValidInstrSettings . 209
is_absorbance_based . 210
is_effective . 211
is_mole_based . 212
is_normalized . 213
is_photon_based . 214
is_scaled . 215
is_tagged . 215
join_mspct . 216
labels . 218
Ler_leaf.spct . 219
log . 220
make_var_labels . 221
MathFun . 223
merge2object_spct . 224
merge_attributes . 225
minus-.generic_spct . 226
mod-.generic_spct . 226
msmsply . 227
mspct_classes . 228
na.omit . 228
net_irradiance . 231
normalization . 232
normalize . 233
normalized_diff_ind . 239
normalize_range_arg . 241
oper_spectra . 242
peaks . 243
phenylalanine.spct . 250
photodiode.spct . 251
photons_energy_ratio . 252
photon_irradiance . 253
photon_ratio . 254
plus-.generic_spct . 256
print.generic_spct . 256

6 Contents

print.metadata . 258
print.solar_time . 259
print.summary_generic_spct . 259
print.tod_time . 260
print.waveband . 261
prod_spectra . 261
pull_sample . 262
q2e . 264
qe_ratio . 266
q_fluence . 268
q_fraction . 271
q_irrad . 274
q_ratio . 278
q_response . 281
r4p_pkgs . 284
rbindspct . 284
reflectance . 286
relative_AM . 289
replace_bad_pixs . 290
response . 291
Rfr_fraction . 294
Rfr_from_n . 297
Rfr_normdiff . 298
Rfr_ratio . 302
rgb_spct . 305
rmDerivedMspct . 306
rmDerivedSpct . 306
round . 307
select_spct_attributes . 308
setBSWFUsed . 309
setFilterProperties . 310
setGenericSpct . 312
setHowMeasured . 316
setIdFactor . 317
setInstrDesc . 318
setInstrSettings . 319
setKType . 320
setMultipleWl . 321
setNormalized . 322
setResponseType . 323
setRfrType . 324
setScaled . 326
setSoluteProperties . 327
setTfrType . 329
setTimeUnit . 331
setWhatMeasured . 332
setWhenMeasured . 333
setWhereMeasured . 334

Contents 7

shared_member_class . 336
sign . 336
slash-.generic_spct . 337
smooth_spct . 337
solar_time . 340
source_spct . 341
spct_attr2tb . 347
spct_classes . 348
spct_metadata . 348
spct_wide2long . 350
spikes . 351
split2mspct . 356
split_bands . 359
split_energy_irradiance . 360
split_irradiance . 362
split_photon_irradiance . 363
spread . 364
Subset . 366
subset2mspct . 367
subt_spectra . 368
summary.generic_spct . 369
summary_spct_classes . 371
sum_spectra . 372
sun.spct . 373
sun_angles . 374
sun_daily.spct . 377
sun_evening.spct . 378
s_e_irrad2rgb . 379
s_mean . 380
s_mean_se . 382
s_mean_se_band . 384
s_median . 386
s_prod . 388
s_range . 390
s_sd . 392
s_se . 394
s_sum . 396
s_var . 398
T2A . 400
T2Afr . 402
tag . 404
Tfr_fraction . 406
Tfr_normdiff . 410
Tfr_ratio . 413
thin_wl . 417
times-.generic_spct . 421
transmittance . 421
Trig . 424

8 photobiology-package

trimInstrDesc . 425
trimInstrSettings . 426
trim_spct . 427
trim_tails . 429
trim_waveband . 430
trim_wl . 432
two_filters.spct . 434
tz_time_diff . 435
uncollect2spct . 436
untag . 437
upgrade_spct . 438
upgrade_spectra . 439
using_Tfr . 439
validate_geocode . 440
valleys . 441
verbose_as_default . 448
v_insert_hinges . 449
v_replace_hinges . 449
water.spct . 450
water_vp_sat . 451
waveband . 455
waveband_ratio . 457
wb2rect_spct . 458
wb2spct . 459
wb2tagged_spct . 460
wb_trim_as_default . 461
white_led.source_spct . 461
wl2wavenumber . 462
wls_at_target . 464
wl_max . 468
wl_midpoint . 469
wl_min . 471
wl_range . 472
wl_stepsize . 473
w_length2rgb . 474
w_length_range2rgb . 475
^.generic_spct . 476

Index 477

photobiology-package photobiology: Photobiological Calculations

photobiology-package 9

Description

Definitions of classes, methods, operators and functions for use in photobiology and radiation me-
teorology and climatology. Calculation of effective (weighted) and not-weighted irradiances/doses,
fluence rates, transmittance, reflectance, absorptance, absorbance and diverse ratios and other de-
rived quantities from spectral data. Local maxima and minima: peaks, valleys and spikes. Conver-
sion between energy-and photon-based units. Wavelength interpolation. Astronomical calculations
related solar angles and day length. Colours and vision. This package is part of the ’r4photobiology’
suite, Aphalo, P. J. (2015) doi:10.19232/uv4pb.2015.1.14.

Details

Package ‘photobiology’ is at the core of a suite of R packages supporting computations and plotting
relevant to photobiology (described at https://www.r4photobiology.info/). Package ’photobi-
ology’ has its main focus in the characterization of the light environment, the description of optical
properties of objects and substances and description of light responses of organisms and devices
used to measure light. The facilities for spectral data storage and manipulations are widely useful
in photobiology, chemistry, geophysics, radiation climatology and remote sensing. Astronomical
computations for the sun are also implemented. The design of object classes for spectral data sup-
ports reproducibility by facilitating the consistent use of units and physical quantities and consistent
embedding of metadata. Data are expressed throughout using SI base units, except for wavelengths
which are consistently expressed in nanometres [nm]. Please see the vignette 0: The R for Photo-
biology Suite for a description of the suite.

Acknowledgements

This work was funded by the Academy of Finland (decision 252548). COST Action FA9604
‘UV4Growth’ facilitated discussions and exchanges of ideas that lead to the development of this
package. The contributions of Andy McLeod, Lars Olof Björn, Nigel Paul, Lasse Ylianttila, T.
Matthew Robson and Titta Kotilainen were specially significant. Tutorials by Hadley Wickham and
comments on my presentation at UseR!2015 allowed me to significantly improve the coding and
functionality.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Titta K. Kotilainen (ORCID) [contributor]

• Glenn Davis <gdavis@gluonics.com> [contributor]

• Agnese Fazio <agnese.fazio@uni-jena.de> [contributor]

References

Aphalo, P. J., Albert, A., Björn, L. O., McLeod, A. R., Robson, T. M., Rosenqvist, E. (Eds.). (2012).
Beyond the Visible: A handbook of best practice in plant UV photobiology (1st ed., p. xx + 174).
Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. ISBN
978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). Open access PDF download available
at doi:10.31885/9789521083631.

https://doi.org/10.19232/uv4pb.2015.1.14
https://www.r4photobiology.info/
https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2822-9734
https://doi.org/10.31885/9789521083631

10 A.illuminant.spct

Aphalo, Pedro J. (2015) The r4photobiology suite. UV4Plants Bulletin, 2015:1, 21-29. doi:10.19232/
uv4pb.2015.1.14.

Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., Shawkey, M. D. (2013) pavo: an R package
for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution,
4(10):906-913. doi:10.1111/2041210X.12069.

See Also

Useful links:

• https://docs.r4photobiology.info/photobiology/

• https://github.com/aphalo/photobiology

• Report bugs at https://github.com/aphalo/photobiology/issues

Examples

irradiance of the whole spectrum
irrad(sun.spct)
photon irradiance 400 nm to 700 nm
q_irrad(sun.spct, waveband(c(400,700)))
energy irradiance 400 nm to 700 nm
e_irrad(sun.spct, waveband(c(400,700)))
simulating the effect of a filter on solar irradiance
e_irrad(sun.spct * yellow_gel.spct, waveband(c(400,500)))
e_irrad(sun.spct * yellow_gel.spct, waveband(c(500,700)))
daylength
sunrise_time(lubridate::today(tzone = "EET"), tz = "EET",

geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

day_length(lubridate::today(tzone = "EET"), tz = "EET",
geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

colour as seen by humans
color_of(sun.spct)
color_of(sun.spct * yellow_gel.spct)
filter transmittance
transmittance(yellow_gel.spct)
transmittance(yellow_gel.spct, waveband(c(400,500)))
transmittance(yellow_gel.spct, waveband(c(500,700)))

A.illuminant.spct CIE A illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding
spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates typical, domestic,
tungsten-filament lighting and ’corresponds’ to a black body a 2856 K. CIE standard illuminant
A is intended to represent typical, domestic, tungsten-filament lighting. Original data from http:
//files.cie.co.at/204.xls downloaded on 2014-07-25 The variables are as follows:

https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.1111/2041-210X.12069
https://docs.r4photobiology.info/photobiology/
https://github.com/aphalo/photobiology
https://github.com/aphalo/photobiology/issues
http://files.cie.co.at/204.xls
http://files.cie.co.at/204.xls

A2T 11

Usage

A.illuminant.spct

Format

A source spectrum with 96 rows and 2 variables

Details

• w.length (nm)
• s.e.irrad (rel. units)

Author(s)

CIE

See Also

Other Spectral data examples: D65.illuminant.spct, Ler_leaf.spct, black_body.spct, ccd.spct,
clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

A.illuminant.spct

A2T Convert absorbance into transmittance

Description

Function that converts absorbance (a.u.) into transmittance (fraction).

Usage

A2T(x, action, byref, ...)

Default S3 method:
A2T(x, action = NULL, byref = FALSE, ...)

S3 method for class 'numeric'
A2T(x, action = NULL, byref = FALSE, ...)

S3 method for class 'filter_spct'
A2T(x, action = "add", byref = FALSE, ...)

S3 method for class 'filter_mspct'
A2T(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

12 absorbance

Arguments

x an R object

action a character string

byref logical indicating if new object will be created by reference or by copy of x

... not used in current version

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with a column Tfr added and A and Afr possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

Methods (by class)

• A2T(default): Default method for generic function

• A2T(numeric): method for numeric vectors

• A2T(filter_spct): Method for filter spectra

• A2T(filter_mspct): Method for collections of filter spectra

See Also

Other quantity conversion functions: Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

absorbance Absorbance

Description

Function to calculate the mean, total, or other summary of absorbance for spectral data stored in a
filter_spct or in an object_spct.

Usage

absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'

absorbance 13

absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'object_spct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,

14 absorbance

.paropts = NULL
)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• absorbance(default): Default for generic function

• absorbance(filter_spct): Specialization for filter spectra

absorptance 15

• absorbance(object_spct): Specialization for object spectra

• absorbance(filter_mspct): Calculates absorbance from a filter_mspct

• absorbance(object_mspct): Calculates absorbance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

absorbance(polyester.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3))
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

absorptance Absorptance

Description

Function to calculate the mean, total, or other summary of absorptance for spectral data stored in a
filter_spct or in an object_spct. Absorptance is a different quantity than absorbance.

Usage

absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'
absorptance(
spct,
w.band = NULL,
quantity = "average",

16 absorptance

wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'object_spct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx"

)

S3 method for class 'object_mspct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

absorptance 17

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• absorptance(default): Default for generic function

• absorptance(filter_spct): Specialization for filter spectra

• absorptance(object_spct): Specialization for object spectra

• absorptance(filter_mspct): Calculates absorptance from a filter_mspct

• absorptance(object_mspct): Calculates absorptance from a object_mspct

18 add_attr2tb

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

absorptance(black_body.spct, new_waveband(400,500))
absorptance(white_body.spct, new_waveband(300,400))
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3))
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

add_attr2tb Copy attributes from members of a generic_mspct

Description

Copy metadata attributes from members of a generic_mspct object into a tibble or data.frame.

Usage

add_attr2tb(
tb = NULL,
mspct,
col.names = NULL,
idx = "spct.idx",
unnest = FALSE

)

when_measured2tb(mspct, tb = NULL, col.names = "when.measured", idx = NULL)

geocode2tb(mspct, tb = NULL, col.names = "geocode", idx = "spct.idx")

lonlat2tb(mspct, tb = NULL, col.names = c("lon", "lat"), idx = "spct.idx")

lon2tb(mspct, tb = NULL, col.names = "lon", idx = "spct.idx")

add_attr2tb 19

lat2tb(mspct, tb = NULL, col.names = "lat", idx = "spct.idx")

address2tb(mspct, tb = NULL, col.names = "address", idx = "spct.idx")

what_measured2tb(
mspct,
tb = NULL,
col.names = "what.measured",
idx = "spct.idx"

)

how_measured2tb(mspct, tb = NULL, col.names = "how.measured", idx = "spct.idx")

normalized2tb(mspct, tb = NULL, col.names = "normalized", idx = "spct.idx")

scaled2tb(mspct, tb = NULL, col.names = "scaled", idx = "spct.idx")

instr_desc2tb(mspct, tb = NULL, col.names = "instr.desc", idx = "spct.idx")

instr_settings2tb(
mspct,
tb = NULL,
col.names = "instr.settings",
idx = "spct.idx"

)

BSWF_used2tb(mspct, tb = NULL, col.names = "BSWF.used", idx = "spct.idx")

filter_properties2tb(
mspct,
tb = NULL,
col.names = "filter.properties",
idx = "spct.idx"

)

solute_properties2tb(
mspct,
tb = NULL,
col.names = "solute.properties",
idx = "spct.idx"

)

Tfr_type2tb(mspct, tb = NULL, col.names = "Tfr.type", idx = "spct.idx")

Rfr_type2tb(mspct, tb = NULL, col.names = "Rfr.type", idx = "spct.idx")

time_unit2tb(mspct, tb = NULL, col.names = "time.unit", idx = "spct.idx")

20 add_attr2tb

comment2tb(mspct, tb = NULL, col.names = "comment", idx = "spct.idx")

Arguments

tb tibble or data.frame to which to add the data (optional).

mspct generic_mspct Any collection of spectra.

col.names named character vector Name(s) of metadata attributes to copy, while if named,
the names provide the name for the column.

idx character Name of the column with the names of the members of the collection
of spectra.

unnest logical Flag controlling if metadata attributes that are lists of values should be
returned in a list column or in separate columns.

Details

The attributes are copied to a column in a tibble or data frame. If the tb formal parameter receives
NULL as argument, a new tibble will be created. If an existing data.frame or tibble is passed
as argument, new columns are added to it. However, the number of rows in the argument passed to
tb must match the number of spectra in the argument passed to mspct. Only in the case of method
add_attr2tb() if the argument to col.names is a named vector, the names of members are used
as names for the columns created. This permits setting any valid name for the new columns. If the
vector passed to col.names has no names the names of the attributes are used for the new columns.
If the fields of the attributes are unnested their names are used as names for the columns.

Valid accepted as argument to col.names are NULL, "lon", "lat", "address", "geocode", "where.measured",
"when.measured", "what.measured", "how.measured", "comment", "normalised", "normalized",
"scaled", "bswf.used", "instr.desc", "instr.settings", solute.properties, "filter.properties",
"Tfr.type", "Rfr.type", "time.unit".

Value

A tibble With the metadata attributes in separate new variables.

Note

The order of the first two arguments is reversed in add_attr2tb() compared to the other functions.
This is to allow its use in ’pipes’, while the functions for single attributes are expected to be used
mostly to create new tibbles.

See Also

Other measurement metadata functions: getFilterProperties(), getHowMeasured(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Afr2T 21

Examples

library(dplyr)

my.mspct <- source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2))
q_irrad(my.mspct) %>%

add_attr2tb(my.mspct, c(lat = "latitude",
lon = "longitude",
when.measured = "time"))

when_measured2tb(my.mspct)

Afr2T Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction)
is available, it allows conversions between internal and total absorptance.

Usage

Afr2T(x, action, byref, clean, ...)

Default S3 method:
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, ...)

S3 method for class 'numeric'
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)

S3 method for class 'filter_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'object_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'filter_mspct'
Afr2T(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

22 Afr2T

S3 method for class 'object_mspct'
Afr2T(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

action character Allowed values "replace" and "add"

byref logical indicating if new object will be created by reference or by copy of x

clean logical replace off-boundary values before conversion

... not used in current version

Rfr numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is
internal reflectance,

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with a column Tfr added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

Methods (by class)

• Afr2T(default): Default method for generic function

• Afr2T(numeric): Default method for generic function

• Afr2T(filter_spct): Method for filter spectra

• Afr2T(object_spct): Method for object spectra

• Afr2T(filter_mspct): Method for collections of filter spectra

• Afr2T(object_mspct): Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), T2A(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

any2T 23

Examples

T2Afr(Ler_leaf.spct)

any2T Convert filter quantities.

Description

Functions that convert or add related physical quantities to filter_spct or object_spct objects.
transmittance (fraction) into absorptance (fraction).

Usage

any2T(x, action = "add", clean = FALSE)

any2A(x, action = "add", clean = FALSE)

any2Afr(x, action = "add", clean = FALSE)

Arguments

x an filter_spct or a filter_mspct object.

action character Allowed values "replace" and "add".

clean logical replace off-boundary values before conversion

Details

These functions are dispatchers for A2T, Afr2T, T2A, and T2Afr. The dispatch is based on the names
of the variables stored in x. They do not support in-place modification of x.

Value

A copy of x with the columns for the different quantities added or replaced. If action = "replace",
in all cases, the additional columns are removed, even if no column needs to be added.

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

Examples

any2Afr(Ler_leaf.spct)
any2T(Ler_leaf.spct)
any2T(polyester.spct)

24 as.calibration_mspct

as.calibration_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.calibration_mspct(x, ...)

Default S3 method:
as.calibration_mspct(x, ...)

S3 method for class 'data.frame'
as.calibration_mspct(x, ...)

S3 method for class 'calibration_spct'
as.calibration_mspct(x, ...)

S3 method for class 'list'
as.calibration_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.calibration_mspct(
x,
w.length,
spct.data.var = "irrad.mult",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

as.calibration_spct 25

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a calibration_mspctt object.

Methods (by class)

• as.calibration_mspct(default):

• as.calibration_mspct(data.frame):

• as.calibration_mspct(calibration_spct):

• as.calibration_mspct(list):

• as.calibration_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(),
as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(),
as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.calibration_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.calibration_spct(x, ...)

Default S3 method:
as.calibration_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

26 as.chroma_mspct

Value

A copy of x converted into a calibration_spct object.

Methods (by class)

• as.calibration_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.chroma_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.chroma_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.chroma_mspct(x, ...)

Default S3 method:
as.chroma_mspct(x, ...)

S3 method for class 'data.frame'
as.chroma_mspct(x, ...)

S3 method for class 'chroma_spct'
as.chroma_mspct(x, ...)

S3 method for class 'list'
as.chroma_mspct(x, ..., ncol = 1, byrow = FALSE)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

as.chroma_spct 27

Value

A copy of x converted into a chroma_mspct object.

Methods (by class)

• as.chroma_mspct(default):

• as.chroma_mspct(data.frame):

• as.chroma_mspct(chroma_spct):

• as.chroma_mspct(list):

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.cps_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.chroma_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.chroma_spct(x, ...)

Default S3 method:
as.chroma_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a chroma_spct object.

Methods (by class)

• as.chroma_spct(default):

28 as.cps_mspct

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.cps_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.cps_mspct(x, ...)

Default S3 method:
as.cps_mspct(x, ...)

S3 method for class 'data.frame'
as.cps_mspct(x, ...)

S3 method for class 'cps_spct'
as.cps_mspct(x, ...)

S3 method for class 'list'
as.cps_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.cps_mspct(
x,
w.length,
spct.data.var = "cps",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

as.cps_spct 29

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a cps_mspct object.

Methods (by class)

• as.cps_mspct(default):

• as.cps_mspct(data.frame):

• as.cps_mspct(cps_spct):

• as.cps_mspct(list):

• as.cps_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.cps_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.cps_spct(x, ...)

Default S3 method:
as.cps_spct(x, ...)

30 as.filter_mspct

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a cps_spct object.

Methods (by class)

• as.cps_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.filter_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.filter_mspct(x, ...)

Default S3 method:
as.filter_mspct(x, ...)

S3 method for class 'data.frame'
as.filter_mspct(x, Tfr.type = c("total", "internal"), strict.range = TRUE, ...)

S3 method for class 'filter_spct'
as.filter_mspct(x, ...)

S3 method for class 'list'
as.filter_mspct(
x,
Tfr.type = c("total", "internal"),
strict.range = TRUE,
...,
ncol = 1,

as.filter_mspct 31

byrow = FALSE
)

S3 method for class 'matrix'
as.filter_mspct(
x,
w.length,
spct.data.var = "Tfr",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

Tfr.type a character string, either "total" or "internal"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a filter_mspct object.

Methods (by class)

• as.filter_mspct(default):

• as.filter_mspct(data.frame):

• as.filter_mspct(filter_spct):

• as.filter_mspct(list):

• as.filter_mspct(matrix):

32 as.filter_spct

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.filter_spct Coerce or convert into a filter spectrum

Description

Return a possibly modified copy of an R object with its class set to a filter spectrum. In the case
of conversion from a solute_spct object, compute the spectral quantity based on additional input
from user.

Usage

as.filter_spct(x, ...)

Default S3 method:
as.filter_spct(
x,
Tfr.type = c("total", "internal"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'solute_spct'
as.filter_spct(
x,
Tfr.type = "internal",
strict.range = getOption("photobiology.strict.range", default = FALSE),
Rfr.constant = NA_real_,
comment = NULL,
molar.concentration = NULL,
mass.concentration = NULL,
path.length = 1,
...

)

as.generic_mspct 33

Arguments

x an R object.

... other arguments passed to "set" functions.

Tfr.type a character string, either "total" or "internal".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Rfr.constant numeric The value of the reflection factor (/1) to be set.

comment character A string to be added as a comment attribute to the object created. If
not supplied, the comment will be copied from x.

molar.concentration, mass.concentration
numeric Concentration to be used to compute transmittance of the solute in so-
lution [molm−3 = mmol dm−3 or kgm−3 = g dm−3, respectively].

path.length numeric The length of the light path (m) used to compute transmittance of the
solute in a solution.

Value

A copy of x converted into a filter_spct. object.

Methods (by class)

• as.filter_spct(default):

• as.filter_spct(solute_spct):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.generic_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

34 as.generic_mspct

Usage

as.generic_mspct(x, ...)

Default S3 method:
as.generic_mspct(x, ...)

S3 method for class 'data.frame'
as.generic_mspct(x, force.spct.class = FALSE, ...)

S3 method for class 'generic_spct'
as.generic_mspct(x, force.spct.class = FALSE, ...)

S3 method for class 'list'
as.generic_mspct(x, force.spct.class = FALSE, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.generic_mspct(
x,
w.length,
member.class,
spct.data.var,
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

mat2mspct(
x,
w.length,
member.class,
spct.data.var,
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor
force.spct.class

logical indicating whether to change the class of members to generic_spct or
retain the existing class.

ncol integer Number of ’virtual’ columns in data

as.generic_mspct 35

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

member.class character The name of the class of the individual spectra to be constructed.

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a generic_mspct object.

Methods (by class)

• as.generic_mspct(default):

• as.generic_mspct(data.frame):

• as.generic_mspct(generic_spct):

• as.generic_mspct(list):

• as.generic_mspct(matrix):

Note

Members of generic_mspct objects can be heterogeneous: they can belong to any class derived
from generic_spct and class is not enforced. When x is a list of data frames force.spct.class
= TRUE needs to be supplied. When x is a square matrix an explicit argument is needed for byrow to
indicate how data in x should be read. In every case the length of the w.length vector must match
one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

36 as.matrix-mspct

as.generic_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.generic_spct(x, ...)

Default S3 method:
as.generic_spct(x, ...)

Arguments

x an R object

... other arguments passed to "set" functions

Value

A copy of x converted into a generic_spct object.

Methods (by class)

• as.generic_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.matrix-mspct Coerce a collection of spectra into a matrix

Description

Convert an object of class generic_mspct or a derived class into an R matrix with wavelengths
saved as an attribute and spectral data in rows or columns.

as.object_mspct 37

Usage

S3 method for class 'generic_mspct'
as.matrix(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)

mspct2mat(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)

Arguments

x generic_mspct object.

spct.data.var character The name of the variable containing the spectral data.

byrow logical. If FALSE (the default) the matrix is filled with the spectra stored by
columns, otherwise the matrix is filled by rows.

... currently ignored.

Warning!

This conversion preserves the spectral data but discards almost all the metadata contained in the
spectral objects. In other words a matrix created with this function cannot be used to recreate the
original object unless the same metadata is explicitly supplied when converting the matrix into new
collection of spectra.

Note

Only collections of spectra containing spectra with exactly the same w.length values can by con-
verted. If needed, the spectra can be re-expressed before attempting the conversion to a matrix.

as.object_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.object_mspct(x, ...)

Default S3 method:
as.object_mspct(x, ...)

S3 method for class 'data.frame'
as.object_mspct(
x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = TRUE,

38 as.object_mspct

...
)

S3 method for class 'object_spct'
as.object_mspct(x, ...)

S3 method for class 'list'
as.object_mspct(
x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

Tfr.type a character string, either "total" or "internal"

Rfr.type a character string, either "total" or "specular"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

Value

A copy of x converted into a object_mspct object.

Methods (by class)

• as.object_mspct(default):

• as.object_mspct(data.frame):

• as.object_mspct(object_spct):

• as.object_mspct(list):

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.object_spct 39

as.object_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.object_spct(x, ...)

Default S3 method:
as.object_spct(

x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

Tfr.type a character string, either "total" or "internal".

Rfr.type a character string, either "total" or "specular".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Value

A copy of x converted into a object_spct object.

Methods (by class)

• as.object_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

40 as.raw_mspct

as.raw_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.raw_mspct(x, ...)

Default S3 method:
as.raw_mspct(x, ...)

S3 method for class 'data.frame'
as.raw_mspct(x, ...)

S3 method for class 'raw_spct'
as.raw_mspct(x, ...)

S3 method for class 'list'
as.raw_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.raw_mspct(
x,
w.length,
spct.data.var = "counts",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

as.raw_spct 41

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a raw_mspct object.

Methods (by class)

• as.raw_mspct(default):

• as.raw_mspct(data.frame):

• as.raw_mspct(raw_spct):

• as.raw_mspct(list):

• as.raw_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.raw_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.raw_spct(x, ...)

Default S3 method:
as.raw_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

42 as.reflector_mspct

Value

A copy of x converted into a raw_spct object.

Methods (by class)

• as.raw_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.reflector_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.reflector_mspct(x, ...)

Default S3 method:
as.reflector_mspct(x, ...)

S3 method for class 'data.frame'
as.reflector_mspct(
x,
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...

)

S3 method for class 'reflector_spct'
as.reflector_mspct(x, ...)

S3 method for class 'list'
as.reflector_mspct(
x,
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...,
ncol = 1,

as.reflector_mspct 43

byrow = FALSE
)

S3 method for class 'matrix'
as.reflector_mspct(
x,
w.length,
spct.data.var = "Rfr",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

Rfr.type a character string, either "total" or "specular"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a reflector_mspct object.

Methods (by class)

• as.reflector_mspct(default):

• as.reflector_mspct(data.frame):

• as.reflector_mspct(reflector_spct):

• as.reflector_mspct(list):

• as.reflector_mspct(matrix):

44 as.reflector_spct

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.reflector_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.reflector_spct(x, ...)

Default S3 method:
as.reflector_spct(

x,
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

Rfr.type a character string, either "total" or "specular".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Value

A copy of x converted into a reflector_spct object.

Methods (by class)

• as.reflector_spct(default):

as.response_mspct 45

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.response_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.response_mspct(x, ...)

Default S3 method:
as.response_mspct(x, ...)

S3 method for class 'data.frame'
as.response_mspct(x, time.unit = "second", ...)

S3 method for class 'response_spct'
as.response_mspct(x, ...)

S3 method for class 'list'
as.response_mspct(x, time.unit = "second", ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.response_mspct(
x,
w.length,
spct.data.var = "s.e.response",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

time.unit character A string, "second", "day" or "exposure"

46 as.response_spct

ncol integer Number of ’virtual’ columns in data
byrow logical If ncol > 1 how to read in the data
w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).
spct.data.var character The name of the variable that will contain the spectral data. This indi-

cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a response_mspct object.

Methods (by class)

• as.response_mspct(default):
• as.response_mspct(data.frame):
• as.response_mspct(response_spct):
• as.response_mspct(list):
• as.response_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.response_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.response_spct(x, ...)

Default S3 method:
as.response_spct(x, time.unit = "second", ...)

as.solar_date 47

Arguments

x an R object.

... other arguments passed to "set" functions.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

Value

A copy of x converted into a response_spct object.

Methods (by class)

• as.response_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.solar_date Convert a solar_time object into solar_date object

Description

Convert a solar_time object into solar_date object

Usage

as.solar_date(x, time)

Arguments

x solar_time object.

time an R date time object

Value

For method as.solar_date() a date-time object with the class attr set to "solar.time". This is
needed only for unambiguous formatting and printing.

See Also

Other Local solar time functions: is.solar_time(), print.solar_time(), solar_time()

48 as.solute_mspct

as.solute_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.solute_mspct(x, ...)

Default S3 method:
as.solute_mspct(x, ...)

S3 method for class 'data.frame'
as.solute_mspct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = TRUE,
...

)

S3 method for class 'solute_spct'
as.solute_mspct(x, ...)

S3 method for class 'list'
as.solute_mspct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'
as.solute_mspct(
x,
w.length,
spct.data.var = "K.mole",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

as.solute_mspct 49

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

K.type a character string, either "attenuation", "absorption" or "scattering"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelength values sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a filter_mspct object.

Methods (by class)

• as.solute_mspct(default):

• as.solute_mspct(data.frame):

• as.solute_mspct(solute_spct):

• as.solute_mspct(list):

• as.solute_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

50 as.solute_spct

as.solute_spct Coerce to a solute spectrum

Description

Return a possibly modified copy of an R object with its class set to solute_spct (a solute spec-
trum). In the case of conversion from a filter_spct object, compute spectral molar attenuation
based on additional input from user.

Usage

as.solute_spct(x, ...)

Default S3 method:
as.solute_spct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'filter_spct'
as.solute_spct(
x,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
comment = NULL,
molar.concentration = NULL,
mass.concentration = NULL,
path.length = 1,
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

K.type a character string, one of "attenuation", "absorption" or "scattering".

as.source_mspct 51

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

name, solvent.name
character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The mass in Dalton (Da = g/mol).

formula character The molecular formula.

structure raster A bitmap of the structure.

ID, solvent.ID character The IDs of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChen" for the authority.

comment character A string to be added as a comment attribute to the object created. If
not supplied, the comment will be copied from x.

molar.concentration, mass.concentration
numeric Concentration to be used to compute transmittance of the solute in so-
lution [molm−3 = mmol dm−3 or kgm−3 = g dm−3, respectively].

path.length numeric The length of the light path (m) used to compute transmittance of the
solute in a solution.

Value

A copy of x converted into a solute_spct object.

Methods (by class)

• as.solute_spct(default):

• as.solute_spct(filter_spct):

See Also

setSoluteSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.source_spct(), source_spct()

as.source_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

52 as.source_mspct

Usage

as.source_mspct(x, ...)

Default S3 method:
as.source_mspct(x, ...)

S3 method for class 'data.frame'
as.source_mspct(
x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'source_spct'
as.source_mspct(x, ...)

S3 method for class 'list'
as.source_mspct(
x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'
as.source_mspct(
x,
w.length,
spct.data.var = "s.e.irrad",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

time.unit character A string, "second", "day" or "exposure"

bswf.used character

as.source_spct 53

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a source_mspct object.

Methods (by class)

• as.source_mspct(default):

• as.source_mspct(data.frame):

• as.source_mspct(source_spct):

• as.source_mspct(list):

• as.source_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), split2mspct(), subset2mspct()

as.source_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

54 as.source_spct

Usage

as.source_spct(x, ...)

Default S3 method:
as.source_spct(
x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

bswf.used character A string indicating the BSWF used, if any, for spectral effective irra-
diance or exposure ("none" or the name of the BSWF).

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Value

A copy of x converted into a source_spct object.

Methods (by class)

• as.source_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.solute_spct(), source_spct()

as_energy 55

as_energy Convert spectral photon irradiance into spectral energy irradiance

Description

Convert a spectral photon irradiance [mol s−1 m−2 nm−1] into a spectral energy irradiance [W m−2 nm−1].

Usage

as_energy(w.length, s.qmol.irrad)

Arguments

w.length numeric vector of wavelengths [nm]).

s.qmol.irrad numeric vector of spectral photon irradiance values.

Value

A numeric vector of spectral (energy) irradiances.

See Also

Other low-level functions operating on numeric vectors.: as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.spct, as_energy(w.length, s.q.irrad))

as_quantum Convert spectral energy irradiance into spectral photon irradiance

Description

Convert spectral energy irradiance [W m-2 nm-1] into spectral photon irradiance expressed as num-
ber of photons [s-1 m-2 nm-1]

Usage

as_quantum(w.length, s.e.irrad)

56 as_quantum_mol

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral (energy) irradiance values.

Value

A numeric vector of spectral photon irradiances.

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), e2q(), e2qmol_multipliers(),
e2quantum_multipliers(), q2e()

Examples

with(sun.data, as_quantum(w.length, s.e.irrad))

as_quantum_mol Convert spectral energy irradiance into spectral photon irradiance

Description

Convert spectral energy irradiance [W m−2 nm−1] into a spectral photon irradiance expressed in
number of molds of photons [mol s−1 m−2 nm−1].

Usage

as_quantum_mol(w.length, s.e.irrad)

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral (energy) irradiance values.

Value

a numeric vector of spectral photon irradiances.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

as_tod 57

Examples

with(sun.data, as_quantum_mol(w.length, s.e.irrad))

as_tod Convert datetime to time-of-day

Description

Convert a datetime into a time of day expressed in hours, minutes or seconds from midnight in local
time for a time zone. This conversion is useful when time-series data for different days needs to be
compared or plotted based on the local time-of-day.

Usage

as_tod(x, unit.out = "hours", tz = NULL)

Arguments

x a datetime object accepted by lubridate functions

unit.out character string, One of "tod_time", "hours", "minutes", or "seconds".

tz character string indicating time zone to be used in output.

Value

A numeric vector of the same length as x. If unit.out = "tod_time" an object of class "tod_time"
which the same as for unit.out = "hours" but with the class attribute set, which dispatches to
special format() nad print() methods.

See Also

solar_time

Other Time of day functions: format.tod_time(), print.tod_time()

Examples

library(lubridate)
my_instants <- ymd_hms("2020-05-17 12:05:03") + days(c(0, 30))
my_instants
as_tod(my_instants)
as_tod(my_instants, unit.out = "tod_time")

58 beesxyzCMF.spct

average_spct Average spectral data.

Description

This function gives the result of integrating spectral data over wavelengths and dividing the result
by the spread or span of the wavelengths.

Usage

average_spct(spct)

Arguments

spct generic_spct

Value

One or more numeric values with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2 nm-
1]. Each value in the returned vector corresponds to a variable in the spectral object, except for
wavelength.

Examples

average_spct(sun.spct)

beesxyzCMF.spct Honeybee xyz chromaticity colour matching function data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 700 nm) and the corresponding x,
y, and z chromaticity coordinates. Original data from XXX.

A chroma_spct object with variables as follows:

Usage

beesxyzCMF.spct

Format

A data frame with 81 rows and 4 variables

black_body.spct 59

Details

• w.length (nm)

• x

• y

• z

See Also

Other Visual response data examples: ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

black_body.spct Theoretical optical bodies

Description

Datasets for a hypothetical objects with transmittance 0/1 (0%), reflectance 0/1 (0%), with trans-
mittance 0/1 (0%), reflectance 1/1 (100%), and with with transmittance 1/1 (100%), reflectance 0/1
(0%).

Format

A object_spct object with 4 rows and 3 variables

Details

• w.length (nm)

• Tfr (0..1)

• Rfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, ccd.spct,
clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

60 calc_multipliers

c Combine collections of spectra

Description

Combine two or more generic_mspct objects into a single object.

Usage

S3 method for class 'generic_mspct'
c(..., recursive = FALSE, ncol = 1, byrow = FALSE)

Arguments

... one or more generic_mspct objects to combine.

recursive logical ignored as nesting of collections of spectra is not supported.

ncol numeric Virtual number of columns

byrow logical When object has two dimensions, how to map member objects to columns
and rows.

Value

A collection of spectra object belonging to the most derived class shared among the combined
objects.

calc_multipliers Spectral weights

Description

Calculate multipliers for selecting a range of wavelengths and optionally applying a biological
spectral weighting function (BSWF) and wavelength normalization. This function returns numeric
multipliers that can be used to select a waveband and apply a weight.

Usage

calc_multipliers(
w.length,
w.band,
unit.out = "energy",
unit.in = "energy",
use.cached.mult = FALSE,
fill = 0

)

calc_source_output 61

Arguments

w.length numeric vector of wavelengths (nm).

w.band waveband object.

unit.out character A string: "photon" or "energy", default is "energy".

unit.in character A string: "photon" or "energy", default is "energy".
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

fill numeric If fill = NA then values returned for wavelengths outside the range of
the waveband are set to NA.

Value

a numeric vector of multipliers of the same length as w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), div_spectra(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, calc_multipliers(w.length, new_waveband(400,700),"photon"))
with(sun.data, calc_multipliers(w.length, new_waveband(400,700),"photon"), use.cached.mult = TRUE)

calc_source_output Scaled and/or interpolated light-source spectral output

Description

Values calculated by interpolation from user-supplied spectral emission data or by name for light
source data included in the packages photobiologySun, photobiologyLamps, or photobiologyLEDs,
optionally re-scaling the spectral data values.

Usage

calc_source_output(
w.length.out,
w.length.in,
s.irrad.in,
unit.in = "energy",

62 ccd.spct

scaled = NULL,
fill = NA,
...

)

Arguments

w.length.out numeric vector of wavelengths (nm) for output.

w.length.in numeric vector of wavelengths (nm) for input.

s.irrad.in numeric vector of spectral transmittance value (fractions or percent).

unit.in a character string "energy" or "photon".

scaled NULL, "peak", "area"; div ignored if !is.null(scaled).

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range of the input. If NULL then the tails are deleted. If 0 then the tails are set
to zero.

... Additional arguments passed to spline if called.

Value

a source_spct with three numeric vectors with wavelength values (w.length), scaled and interpo-
lated spectral energy irradiance (s.e.irrad), scaled and interpolated spectral photon irradiance values
(s.q.irrad).

Note

This is a convenience function that adds no new functionality but makes it a little easier to plot lamp
spectral emission data consistently. It automates interpolation, extrapolation/trimming and scaling.

Examples

with(sun.data,
calc_source_output(290:1100,

w.length.in = w.length,
s.irrad.in = s.e.irrad)

)

ccd.spct Spectral response of a back-thinned CCD image sensor.

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as quantum efficiency for
CCD sensor type S11071/S10420 from Hamamatsu (measured without a quartz window). These
vectors are frequently used as sensors in high-UV-sensitivity vector spectrometers. Data digitized
from manufacturer’s data sheet. The original data is expressed as percent quantum efficiency with
a value of 77% at the peak. The data have been re-expressed as fractions of one.

checkTimeUnit 63

Usage

ccd.spct

Format

A response_spct object with 186 rows and 2 variables

Details

• w.length (nm).

• s.q.response (fractional quantum efficiency)

References

Hamamatsu (2014) Datasheet: CCD Image Sensors S11071/S10420-01 Series. Hamamatsu Pho-
tonics KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/S11071-1004.html. Visited 2017-
12-15.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

ccd.spct

checkTimeUnit Check the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

checkTimeUnit(x)

Arguments

x a source_spct object

Value

x possibly with the time.unit attribute modified

64 check_spct

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: convertThickness(), convertTimeUnit(), getTimeUnit(), setTimeUnit()

check_spct Check validity of spectral objects

Description

Check that an R object contains the expected data members.

Usage

check_spct(x, byref, strict.range, force = FALSE, ...)

Default S3 method:
check_spct(x, byref = FALSE, strict.range = NA, force = FALSE, ...)

S3 method for class 'generic_spct'
check_spct(
x,
byref = TRUE,
strict.range = NA,
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'calibration_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'raw_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,

check_spct 65

multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'cps_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'filter_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'solute_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'reflector_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'object_spct'
check_spct(
x,
byref = TRUE,

66 check_spct

strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'response_spct'
check_spct(
x,
byref = TRUE,
strict.range = NA,
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'source_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'chroma_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

Arguments

x An R object

byref logical indicating if new object will be created by reference or by copy of x

strict.range logical indicating whether off-range values result in an error instead of a warn-
ing, NA disables the test.

force logical If TRUE check is done even if checks are disabled.

... additional param possible in derived methods

multiple.wl numeric Maximum number of repeated w.length entries with same value.

check_spectrum 67

Methods (by class)

• check_spct(default): Default for generic function.

• check_spct(generic_spct): Specialization for generic_spct.

• check_spct(calibration_spct): Specialization for calibration_spct.

• check_spct(raw_spct): Specialization for raw_spct.

• check_spct(cps_spct): Specialization for cps_spct.

• check_spct(filter_spct): Specialization for filter_spct.

• check_spct(solute_spct): Specialization for solute_spct.

• check_spct(reflector_spct): Specialization for reflector_spct.

• check_spct(object_spct): Specialization for object_spct.

• check_spct(response_spct): Specialization for response_spct.

• check_spct(source_spct): Specialization for source_spct.

• check_spct(chroma_spct): Specialization for chroma_spct.

See Also

Other data validity check functions: check_spectrum(), check_w.length(), enable_check_spct()

Examples

check_spct(sun.spct)

check_spct(sun.spct)
try(check_spct(-sun.spct))
try(check_spct((sun.spct[1, "w.length"] <- 1000)))

check_spectrum Sanity check a spectrum

Description

Checks spectral irradiance data in numeric vectors for compliance with assumptions used in calcu-
lations.

Usage

check_spectrum(w.length, s.irrad)

Arguments

w.length numeric vector of wavelengths [nm].

s.irrad numeric Corresponding vector of spectral (energy) irradiances [W m−2 nm−1].

68 check_w.length

Value

A single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_w.length(), enable_check_spct()

Examples

with(sun.data, check_spectrum(w.length, s.e.irrad))

check_w.length Sanity check of wavelengths (internal function).

Description

This function checks a w.length vector for compliance with assumptions used in calculations.

Usage

check_w.length(w.length)

Arguments

w.length numeric array of wavelength (nm)

Value

a single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_spectrum(), enable_check_spct()

Examples

with(sun.data, photobiology:::check_w.length(w.length))

ciev10.spct 69

ciev10.spct Linear energy CIE 2008 luminous efficiency function 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 10 degrees target. Original data from http://www.cvrl.org/ downloaded
on 2014-04-29 The variables are as follows:

• w.length (nm)

• s.e.response

Usage

ciev10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev10.spct

ciev2.spct Linear energy CIE 2008 luminous efficiency function 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on
2014-04-29 The variables are as follows:

Usage

ciev2.spct

http://www.cvrl.org/
http://www.cvrl.org/

70 ciexyzCC10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Details

• w.length (nm)

• s.e.response

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev2.spct

ciexyzCC10.spct CIE xyz chromaticity coordinates (CC) 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z chromaticity coordinates. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCC10.spct

https://cie.co.at/data-tables
http://www.cvrl.org/

ciexyzCC2.spct 71

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCC10.spct

ciexyzCC2.spct CIE xyz chromaticity coordinates 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z chromaticity coordinates. According to proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-28 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCC2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

https://cie.co.at/data-tables
http://www.cvrl.org/
https://cie.co.at/data-tables

72 ciexyzCMF10.spct

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCC2.spct

ciexyzCMF10.spct Linear energy CIE xyz colour matching function (CMF) 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z 10 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCMF10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

http://www.cvrl.org/
https://cie.co.at/data-tables
https://cie.co.at/data-tables

ciexyzCMF2.spct 73

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCMF10.spct

ciexyzCMF2.spct Linear energy CIE xyz colour matching function (CMF) 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z 2 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)
• x
• y
• z

Usage

ciexyzCMF2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF10.spct, cone_fundamentals10.spct

Examples

ciexyzCMF2.spct

http://www.cvrl.org/
https://cie.co.at/data-tables

74 clean

class_spct Query which is the class of a spectrum

Description

Extract class information from a generic spectrum.

Usage

class_spct(x)

Arguments

x any R object

Details

The value returned is equivalent to the set intersection of the value returned by class(x) and the
value returned by spct_classes, but preserving the order of the members of the character vector.

Value

A character vector containing all matching xxxx.spct S3 classes.

Examples

class_spct(sun.spct)
class(sun.spct)

clean Clean (=replace) off-range values in a spectrum

Description

These functions implement the equivalent of replace() but for spectral objects instead of vectors.

Usage

clean(x, range, range.s.data, fill, ...)

Default S3 method:
clean(x, range, range.s.data, fill, ...)

S3 method for class 'source_spct'
clean(

clean 75

x,
range = x,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
clean(
x,
range = x,
range.s.data = NULL,
fill = range.s.data,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
clean(x, range = x, range.s.data = c(0, 1), fill = range.s.data, ...)

S3 method for class 'solute_spct'
clean(x, range = x, range.s.data = c(0, NA), fill = range.s.data, ...)

S3 method for class 'object_spct'
clean(
x,
range = x,
range.s.data = c(0, 1),
fill = range.s.data,
min.Afr = NULL,
...

)

S3 method for class 'response_spct'
clean(
x,
range = x,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'cps_spct'
clean(x, range = x, range.s.data = c(0, NA), fill = range.s.data, ...)

S3 method for class 'raw_spct'

76 clean

clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
...

)

S3 method for class 'generic_spct'
clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
col.names,
...

)

S3 method for class 'source_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
clean(
x,
range = NULL,
range.s.data = NULL,
fill = range.s.data,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, 1),
fill = range.s.data,

clean 77

...,

.parallel = FALSE,

.paropts = NULL
)

S3 method for class 'object_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, 1),
fill = range.s.data,
min.Afr = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,

78 clean

.paropts = NULL
)

S3 method for class 'raw_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object
range numeric vector of wavelengths
range.s.data numeric vector of length two giving the allowable range for the spectral data.
fill numeric vector of length 1 or 2, giving the replacement values to use at each

extreme of the range.
... currently ignored
unit.out character string with allowed values "energy", and "photon", or its alias "quan-

tum"
qty.out character string with allowed values "energy", and "photon", or its alias "quan-

tum"
min.Afr numeric Gives the minimum value accepted for the computed absorptance. The

default NULL sets a valid value (Afr >= 0) with a warning. If an integer value is
passed to digits values are adjusted silently.

col.names character The name of the variable to clean
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

clear.spct 79

Value

A copy of x, possibly with some of the spectral data values replaced by the value passed to fill.

Methods (by class)

• clean(default): Default for generic function

• clean(source_spct): Replace off-range values in a source spectrum

• clean(filter_spct): Replace off-range values in a filter spectrum

• clean(reflector_spct): Replace off-range values in a reflector spectrum

• clean(solute_spct): Replace off-range values in a solute spectrum

• clean(object_spct): Replace off-range values in an object spectrum

• clean(response_spct): Replace off-range values in a response spectrum

• clean(cps_spct): Replace off-range values in a counts per second spectrum

• clean(raw_spct): Replace off-range values in a raw counts spectrum

• clean(generic_spct): Replace off-range values in a generic spectrum

• clean(source_mspct):

• clean(filter_mspct):

• clean(reflector_mspct):

• clean(object_mspct):

• clean(solute_mspct):

• clean(response_mspct):

• clean(cps_mspct):

• clean(raw_mspct):

• clean(generic_mspct):

Note

In the case of object_spct objects, cleaning is done first on the Rfr and Tfr columns and sub-
sequently Afr estimated and if needed half of deviation of Afr from the expected minimum value
subtracted from each of Rfr and Tfr.

clear.spct Theoretical spectrum of clear and apaque materials

Description

Dataset for hypothetical objects with transmittance 1/1 (100%) and transmittance 0/1 (0%)

Usage

clear.spct

opaque.spct

80 clip_wl

Format

A filter_spct object with 4 rows and 2 variables

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 4
rows and 2 columns.

Details

• w.length (nm).
• Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct, sun.spct,
sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

clear.spct
opaque.spct

clip_wl Clip head and/or tail of a spectrum

Description

Clip head and tail of a spectrum based on wavelength limits, no interpolation used at range bound-
aries.

Usage

clip_wl(x, range, ...)

Default S3 method:
clip_wl(x, range, ...)

S3 method for class 'generic_spct'
clip_wl(x, range = NULL, ...)

S3 method for class 'generic_mspct'
clip_wl(x, range = NULL, ...)

S3 method for class 'waveband'
clip_wl(x, range = NULL, ...)

S3 method for class 'list'
clip_wl(x, range = NULL, ...)

collect2mspct 81

Arguments

x an R object.

range a numeric vector of length two, or any other object for which function range()
will return range of wavelengths expressed in nanometres.

... ignored (possibly used by derived methods).

Value

a spectrum object or a collection of spectral objects of the same class as x with wavelength heads
and tails clipped.

Methods (by class)

• clip_wl(default): Default for generic function

• clip_wl(generic_spct): Clip an object of class "generic_spct" or derived.

• clip_wl(generic_mspct): Clip an object of class "generic_mspct" or derived.

• clip_wl(waveband): Clip an object of class "waveband".

• clip_wl(list): Clip a list (of objects of class "waveband").

Note

The condition tested is wl >= range[1] & wl < (range[2] + 1e-13).

See Also

Other trim functions: trim_spct(), trim_waveband(), trim_wl()

Examples

clip_wl(sun.spct, range = c(400, 500))
clip_wl(sun.spct, range = c(NA, 500))
clip_wl(sun.spct, range = c(400, NA))

collect2mspct Form a new collection

Description

Form a collection of spectra from separate objects in the parent frame of the call.

82 collect2mspct

Usage

collect2mspct(
.list = NULL,
pattern = "*\\.spct$",
collection.class = NULL,
...

)

Arguments

.list list of R objects

pattern character an optional regular expression, ignored if .list is not NULL.
collection.class

character vector

... additional named arguments passed down to the collection constructor.

Details

This is a convenience function that simplifies the creation of collections from existing objects of
class generic_spct or a derived class. A list of objects con be passed as argument, or a search
pattern. If a list is passed, no search is done. If collection.class is NULL, then all objects
of class generic_spct or of a class derived from it are added to the collection. If objects of
only one derived class are to be collected this class or that of the matching collection should be
passed as argument to collection.class. Objects of other R classes are silently discarded, which
simplifies the specification of search patterns. By default, i.e., if collection.class is NULL, if
all the objects collected belong to the same class then the corresponding collection class will be
returned, otherwise a generic_mspct object with heterogeneous members will be returned. To
force the return of a generic_mspct even when the collected spectra all belong to the same class,
pass generic_mspct as argument to collection.class. If the argument to collection.class
is a vector containing two of more class names, only the matching spectra will be collected, and a
generic_mspct will be returned. The returned object is created with the constructor for the class,
and validated.

Value

By default a collection of spectra.

See Also

Other experimental utility functions: drop_user_cols(), thin_wl(), uncollect2spct()

Examples

collect2mspct() # returns empty generic_mspct object

sun1.spct <- sun.spct
sun2.spct <- sun.spct
kk.spct <- 10:30 # ignored
collect2mspct()

color_of 83

collect2mspct(collection.class = "generic_mspct")

pet1.spct <- polyester.spct
collect2mspct()
collect2mspct(collection.class = "source_mspct")
collect2mspct(collection.class = "filter_mspct")
collect2mspct(collection.class = "response_mspct")

color_of Color of an object

Description

Equivalent RGB color of an object such as a spectrum, wavelength or waveband.

Usage

color_of(x, ...)

Default S3 method:
color_of(x, ...)

S3 method for class 'numeric'
color_of(x, type = "CMF", chroma.type = type, ...)

S3 method for class 'list'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)

S3 method for class 'waveband'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)

S3 method for class 'source_spct'
color_of(x, type = "CMF", chroma.type = type, ...)

S3 method for class 'source_mspct'
color_of(x, ..., idx = "spct.idx")

colour_of(x, ...)

color(x, ...)

fast_color_of_wl(x, type = "CMF", ...)

fast_color_of_wb(x, type = "CMF", ...)

84 color_of

Arguments

x an R object.

... ignored (possibly used by derived methods).
type, chroma.type

character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

short.names logical indicating whether to use short or long names for wavebands

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A color definition in hexadecimal format as a character string of 7 characters, "#" followed by the
red, blue, and green values in hexadecimal (scaled to 0 ... 255). In the case of the specialization for
list, a list of such definitions is returned. In the case of a collection of spectra, a data.frame with
one column with such definitions and by default an additional column with names of the spectra as
index. In case of missing input the returned value is NA.

Methods (by class)

• color_of(default): Default method (returns always "black").

• color_of(numeric): Method that returns Color definitions corresponding to numeric values
representing a wavelengths in nm.

• color_of(list): Method that returns Color of elements in a list.

• color_of(waveband): Color at midpoint of a waveband object.

• color_of(source_spct):

• color_of(source_mspct):

Deprecated

Use of color() is deprecated as this wrapper function may be removed in future versions of the
package because of name clashes. Use color_of() instead.

Note

When x is a list but not a waveband, if a method color_of is not available for the class of each
element of the list, then color_of.default will be called.

Function fast_color_of_wl() should be used only when high performance is needed. It speeds
up performance by rounding the wavelength values in the numeric vector passed as argument to x
and then retrieves the corresponding pre-computed color definitions if type is either "CMF" or "CC".
In other cases it falls-back to calling color_of.numeric(). Returned color definitions always have
default names irrespective of names of x, which is different from the behavior of color_of()
methods.

Function fast_color_of_wb() accepts waveband objects and lists of waveband objects. If all
wavebands are narrow, it issues a vectotized call to fast_color_of_wl() with a vector of wave-
band midpoint wavelengths.

compare_spct 85

Examples

wavelengths <- c(300, 420, 500, 600, NA) # nanometres
color_of(wavelengths)
color_of(waveband(c(300,400)))
color_of(list(blue = waveband(c(400,480)), red = waveband(c(600,700))))
color_of(numeric())
color_of(NA_real_)

color_of(sun.spct)

compare_spct Coarse-grained comparison of two spectra

Description

Compare two spectra using a specified summary function pre-applied to wavelength intervals.

Usage

compare_spct(
x,
w.band = 10,
.summary.fun = NULL,
...,
.comparison.fun = `/`,
returned.value = "spectrum",
use.hinges = FALSE,
short.names = TRUE

)

Arguments

x A collection of two spectral objects of the same type.

w.band waveband object or a numeric stepsize in nanometres.

.summary.fun function. The summary function to use. It must be a method accepting object x
as first argument.

... additional named arguments passed down to .summary.fun.

.comparison.fun

function. The comparison function to use.

returned.value character One of "data.frame", "spectrum", "tagged.spectrum".

use.hinges logical Flag indicating whether to insert "hinges" into the returned spectrum
when tagging it.

short.names logical Flag indicating whether to use short or long names for wavebands when
tagging.

86 cone_fundamentals10.spct

Details

Summaries are computed for each of the wavebands in w.band by applying function .summary.fun
separately to each spectrum, after trimming them to the overlapping wavelength region. Next the
matching summaries are compared by means of .comparison.fun. Both the summaries and the
result of the comparison are returned. Columns containing summary values are named by concate-
nating the name each member spectrum with the name of the argument passed to .summary.fun.

Tagging is useful for plotting using wavelength based colours, or when names for wavebands
are used as annotations. When tagging is requested, the spectrum is passed to method tag with
use.hinges and short.names as additional arguments.

Value

A generic_spct, tagged or not with the wavebdans, or a data.frame object containing the sum-
mary values per waveband for each spectrum and the result of applying the comparison function to
these summaries.

Examples

compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)))
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

w.band = NULL)
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

w.band = list(waveband(c(640, 650)), waveband(c(720, 740))))

compare_spct(filter_mspct(list(pet = polyester.spct,
yllw = yellow_gel.spct)),

w.band = 50,
.comparison.fun = `<`)

head(
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "data.frame")
)
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "tagged.spectrum")
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "tagged.spectrum",
use.hinges = TRUE)

cone_fundamentals10.spct

Ten-degree cone fundaamentals

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on
2014-04-29 The variables are as follows:

http://www.cvrl.org/

cone_fundamentals10.spct 87

Usage

cone_fundamentals10.spct

cone_fundamentals10.mspct

Format

A chroma_spct object with 440 rows and 4 variables

An object of class response_mspct (inherits from generic_mspct, list) with 3 rows and 1
columns.

Details

• w.length (nm)

• x

• y

• z

Value

A chroma_spct object.

A response_mspct object containing the same data in three response_spct objects, one for each
of x, y and z.

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

The missing data for z in the NIR have been filled with zeros.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct

Examples

cone_fundamentals10.spct

https://cie.co.at/data-tables

88 convertTfrType

convertTfrType Convert the "Tfr.type" attribute

Description

Function to set the "Tfr.type" attribute and simultaneously convert the spectral data to correspond
to the new type.

Usage

convertTfrType(x, Tfr.type = NULL)

Arguments

x a filter_spct, object_spct, filter_mspct or object_mspct object.

Tfr.type character One of "internal" or "total".

Details

Internal transmittance, τ , uses as reference the light entering the object while total transmittance,
T , takes the incident light as reference. The conversion is possible only if total reflectance, ρ, is
known. Either as spectral data in an object_spct object, a filter_spct object that is "under-the-
hood" an object_spct, or if a fixed reflectance factor applicable to all wavelengths is stored in the
filter.properties attribute of the filter_spct object.

Conversions are computed as:

τ =
T − ρ

1− ρ

and

T = τ ∗ (1− ρ) + ρ

For the conversion to take place the object passed as argument to x, must contain a column with
transmittance data, named Tfr. Any necessary conversion from absorbance A or from Afr into
transmittance, must be done before calling convertTfrType().

Value

x if possible, with the value of the "Tfr.type" attribute modified and the values stored in the Tfr
variable converted to the new quantity.

Note

if x is not a filter_spct object, x is returned unchanged. If x does not have the "filter.properties"
attribute set if it is missing data, x is returned with Tfr set to NA values.

convertThickness 89

See Also

setTfrType, filter_spct

Examples

getTfrType(polyester.spct)
filter_properties(polyester.spct)
convertTfrType(polyester.spct, Tfr.type = "internal")

convertThickness Convert the "thickness" attribute of an existing filter_spct object.

Description

Function to set the "thickness" attribute and simultaneously converting the spectral data to corre-
spond to the new thickness.

Usage

convertThickness(x, thickness = NULL)

Arguments

x a filter_spct, object_spct, filter_mspct or object_mspct object.

thickness numeric [m].

Details

For spectral transmittance at a different thickness to be exactly computed, it needs to be based on
internal transmittance. This function will apply converTfrType() to x if needed, but to succeed
metadata should be available. Please, see convertTfrType.

Value

x possibly with the "thickness" field of the "filter.properties" attribute modified and Tfr or
A computed for the requested thickness.

Note

if x is not a filter_spct, object_spct, filter_mspct or object_mspct object or a collection of
such objects, x is returned unchanged. If x does not have the "filter.properties" attribute set
or has it with missing member data, x is returned with Tfr set to NA values.

See Also

Other time attribute functions: checkTimeUnit(), convertTimeUnit(), getTimeUnit(), setTimeUnit()

90 convertTimeUnit

Examples

my.spct <- polyester.spct
filter_properties(my.spct)
convertThickness(my.spct, thickness = 250e-6)

convertTimeUnit Convert the "time.unit" attribute of an existing source_spct object

Description

Function to set the "time.unit" attribute and simultaneously rescaling the spectral data to be ex-
pressed using the new time unit as basis of expression. The change is done by reference (’in place’).

Usage

convertTimeUnit(x, time.unit = NULL, ...)

Arguments

x source_spct or response_spct object

time.unit a character string, either "second", "hour", "day", "exposure" or "none", or a
lubridate::duration

... (currently ignored)

Value

x possibly with the time.unit attribute modified

Note

if x is not a source_spct or a response_spct object, or time.unit is NULL x is returned un-
changed, if the existing or new time.unit cannot be converted to a duration, then the returned spec-
trum will contain NAs.

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), getTimeUnit(), setTimeUnit()

Examples

my.spct <- sun.spct
my.spct
convertTimeUnit(my.spct, "day")
my.spct

convolve_each 91

convolve_each Convolve function for collections of spectra

Description

Convolve function for collections of spectra which applies an operation on all the individual mem-
bers of the collection(s) of spectra.

Usage

convolve_each(e1, e2, oper = `*`, sep = "_", ...)

Arguments

e1 an object of class generic_mspct or generic_scpt or numeric

e2 an object of class generic_mspct or generic_scpt or numeric

oper function, usually but not necessarily an operator with two arguments.

sep character Used when pasting the names of members of e1 and e2 to form the
names of members of the returned collection of spectra.

... additional arguments passed to oper if present.

Note

At least one of e1 and e2 must be a generic_mspct object or derived.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), div-.generic_spct, log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

copy_attributes Copy attributes

Description

Copy attributes from x to y. Methods defined for spectral and waveband objects of classes from
package ’photobiology’.

92 cps2irrad

Usage

copy_attributes(x, y, which, ...)

Default S3 method:
copy_attributes(x, y, which = NULL, ...)

S3 method for class 'generic_spct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)

S3 method for class 'generic_mspct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)

S3 method for class 'waveband'
copy_attributes(x, y, which = NULL, ...)

Arguments

x, y R objects

which character Names of attributes to copy, if NULL all those relevant according to
the class of x is used as defaul,

... not used

which.not character Names of attributes not to be copied. The names passed here are re-
moved from the list for which, which is most useful when we want to modify
the default.

copy.class logical If TRUE class attributes are also copied.

Value

A copy of y with additional attributes set.

Methods (by class)

• copy_attributes(default): Default for generic function

• copy_attributes(generic_spct):

• copy_attributes(generic_mspct):

• copy_attributes(waveband):

cps2irrad Conversion from counts per second to physical quantities

Description

Conversion of spectral data expressed as cps into irradiance, transmittance or reflectance.

D2.UV653 93

Usage

cps2irrad(x.sample, pre.fun = NULL, missing.pixs = numeric(0), ...)

cps2Rfr(x.sample, x.white, x.black = NULL, dyn.range = NULL)

cps2Tfr(x.sample, x.clear, x.opaque = NULL, dyn.range = NULL)

Arguments

x.sample, x.clear, x.opaque, x.white, x.black
cps_spct objects.

pre.fun function A function applied to x.sample before conversion.

missing.pixs integer Index to positions in the detector array or scan missing in x.sample but
present in the embedded calibration data. (Use only for emergency recovery of
incomplete data!!)

... Additional arguments passed to pre.fun.

dyn.range numeric The effective dynamic range of the instrument, if NULL it is automati-
cally set based on integration time bracketing.

Value

A source_spct, filter_spct or reflector_spct object containing the spectral values expressed in phys-
ical units.

Note

In contrast to other classes defined in package ’photobiology’, class "cps_spct" can have more
than one column of cps counts in cases where the intention is to merge these values as part of the
processing at the time the calibration is applied. However, being these functions the final step in
the conversion to physical units, they accept as input only objects with a single "cps" column, as
merging is expected to have been already done.

D2.UV653 Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for functions D2_spectrum and FEL_spectrum
for computing example spectral curves based on fitted polynomials.

Format

A polynom::polynomial object with 6 constants.

Details

An object of class polynom::polynomial.

94 D2_spectrum

Author(s)

Lasse Ylianttila (data)

Examples

D2.UV653
as.character(D2.UV653)

D2_spectrum Calculate deuterium lamp output spectrum from fitted constants

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example
from a lamp calibration certificate).

Usage

D2_spectrum(w.length, k = photobiology::D2.UV653, fill = NA_real_)

Arguments

w.length numeric vector of wavelengths (nm) for output

k a polynom:polynomial object with n constants for the polynomial

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range 190 nm to 450 nm. If NULL then the tails are deleted. If 0 then the tails
are set to zero, etc. NA is default.

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irra-
diance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

Note

This is function is valid for wavelengths in the range 180 nm to 495 nm, for wavelengths outside
this range NAs are returned.

Examples

D2_spectrum(200)
D2_spectrum(170:220)

D65.illuminant.spct 95

D65.illuminant.spct CIE D65 illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding
spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates the midday solar
spectrum at middle latitude as ’corresponds’ to the white point of a black body a 6504 K. Original
data from http://files.cie.co.at/204.xls downloaded on 2014-07-25 The variables are as
follows:

Usage

D65.illuminant.spct

Format

A source spectrum with 107 rows and 2 variables

Details

• w.length (nm)

• s.e.irrad (rel. units)

Author(s)

CIE

See Also

Other Spectral data examples: A.illuminant.spct, Ler_leaf.spct, black_body.spct, ccd.spct,
clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

D65.illuminant.spct

http://files.cie.co.at/204.xls

96 day_night

day_night Times for sun positions

Description

Functions for calculating the timing of solar positions, given geographical coordinates and dates.
They can be also used to find the time for an arbitrary solar elevation between 90 and -90 degrees
by supplying "twilight" angle(s) as argument.

Usage

day_night(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

day_night_fast(date, tz, geocode, twilight, unit.out)

is_daytime(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

noon_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "datetime"

)

sunrise_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

sunset_time(
date = lubridate::now(tzone = "UTC"),

day_night 97

tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

day_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

night_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

Arguments

date "vector" of POSIXct times orDate objects, any valid TZ is allowed, default is
current date at Greenwich matching the default for geocode.

tz character vector indicating time zone to be used in output and to interpret Date
values passed as argument to date.

geocode data frame with one or more rows and variables lon and lat as numeric values
(degrees). If present, address will be copied to the output.

twilight character string, one of "none", "rim", "refraction", "sunlight", "civil", "nauti-
cal", "astronomical", or a numeric vector of length one, or two, giving solar
elevation angle(s) in degrees (negative if below the horizon).

unit.out character string, One of "datetime", "day", "hour", "minute", or "second".

Details

Twilight names are interpreted as follows. "none": solar elevation = 0 degrees. "rim": upper rim
of solar disk at the horizon or solar elevation = -0.53 / 2. "refraction": solar elevation = 0 degrees
+ refraction correction. "sunlight": upper rim of solar disk corrected for refraction, which is close
to the value used by the online NOAA Solar Calculator. "civil": -6 degrees, "naval": -12 degrees,
and "astronomical": -18 degrees. Unit names for output are as follows: "day", "hours", "minutes"
and "seconds" times for sunrise and sunset are returned as times-of-day since midnight expressed in
the chosen unit. "date" or "datetime" return the same times as datetime objects with TZ set (this is
much slower than "hours"). Day length and night length are returned as numeric values expressed
in hours when ‘"datetime"’ is passed as argument to unit.out. If twilight is a numeric vector of
length two, the element with index 1 is used for sunrise and that with index 2 for sunset.

98 day_night

is_daytime() supports twilight specifications by name, a test like sun_elevation() > 0 may be
used directly for a numeric angle.

Value

A tibble with variables day, tz, twilight.rise, twilight.set, longitude, latitude, address, sunrise, noon,
sunset, daylength, nightlength or the corresponding individual vectors.

is_daytime() returns a logical vector, with TRUE for day time and FALSE for night time.

noon_time, sunrise_time and sunset_time return a vector of POSIXct times

day_length and night_length return numeric a vector giving the length in hours

Warning

Be aware that R’s Date class does not save time zone metadata. This can lead to ambiguities in
the current implementation based on time instants. The argument passed to date should be of class
POSIXct, in other words an instant in time, from which the correct date will be computed based on
the tz argument.

The time zone in which times passed to date as argument are expressed does not need to be the
local one or match the geocode, however, the returned values will be in the same time zone as the
input.

Note

Function day_night() is an implementation of Meeus equations as used in NOAAs on-line web
calculator, which are very precise and valid for a very broad range of dates. For sunrise and sunset
the times are affected by refraction in the atmosphere, which does in turn depend on weather con-
ditions. The effect of refraction on the apparent position of the sun is only an estimate based on
"typical" conditions. The more tangential to the horizon is the path of the sun, the larger the effect of
refraction is on the times of visual occlusion of the sun behind the horizon—i.e. the largest timing
errors occur at high latitudes. The computation is not defined for latitudes 90 and -90 degrees, i.e.
at the poles.

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all the
same, the function signatures and which values are returned differ. In particular, the implementation
in ’photobiology’ splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates. In ’fishmethods’
(= 1.11-0) there is a bug in function astrocalc4r() that affects sunrise and sunset times. The times
returned by the functions in package ’photobiology’ have been validated against the NOAA base
implementation.

In the current implementation functions sunrise_time, noon_time, sunset_time, day_length,
night_length and is_daytime are all wrappers on day_night, so if more than one quantity is
needed it is preferable to directly call day_night and extract the different components from the
returned list.

night_length returns the length of night-time conditions in one day (00:00:00 to 23:59:59), rather
than the length of the night between two consecutive days.

day_night 99

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/
and in R paclage ’fishmethods’. In ’fishmethods’ (= 1.11-0) there is a bug in function astrocalc4r()
that affects sunrise and sunset times.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

sun_angles.

Other astronomy related functions: format.solar_time(), sun_angles()

Examples

library(lubridate)

my.geocode <- data.frame(lon = 24.93838,
lat = 60.16986,
address = "Helsinki, Finland")

day_night(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_night(ymd("2015-05-30", tz = "EET") + days(1:10),
geocode = my.geocode,
twilight = "civil")

sunrise_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

noon_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

sunset_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode,
unit.out = "day")

is_daytime(ymd("2015-05-30", tz = "EET") + hours(c(0, 6, 12, 18, 24)),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode,
twilight = "civil")

is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),
geocode = my.geocode,

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

100 defunct

twilight = "civil")

defunct Defunct functions and methods

Description

Functions listed here have been removed or deleted, and temporarily replaced by stubs that report
this when they are called.

Usage

f_mspct(...)

mutate_mspct(...)

calc_filter_multipliers(...)

T2T(...)

getAfrType(...)

setAfrType(...)

sample_spct(...)

sample_mspct(...)

Arguments

... ignored

Note

Function f_mspct() has been renamed msdply().

Function mutate_mspct() has been renamed msmsply().

Function calc_filter_multipliers() has been removed.

Function calc_filter_multipliers() has been removed.

Method getAfrType() has been removed.

Method setAfrType() has been removed.

Function sample_spct() has been removed.

Function sample_mspct() has been removed.

despike 101

despike Remove spikes from spectrum

Description

Function that returns an R object with observations corresponding to spikes replaced by values
computed from neighboring pixels. Spikes are values in spectra that are unusually high compared
to neighbors. They are usually individual values or very short runs of similar "unusual" values.
Spikes caused by cosmic radiation are a frequent problem in Raman spectra. Another source of
spikes are "hot pixels" in CCD and diode array detectors.

Usage

despike(x, z.threshold, max.spike.width, window.width, method, na.rm, ...)

Default S3 method:
despike(

x,
z.threshold = NA,
max.spike.width = NA,
window.width = NA,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'numeric'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'data.frame'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
y.var.name = NULL,

102 despike

var.name = y.var.name
)

S3 method for class 'generic_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
y.var.name = NULL,
var.name = y.var.name,
...

)

S3 method for class 'source_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,

despike 103

filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'solute_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'raw_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

104 despike

S3 method for class 'generic_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
y.var.name = NULL,
var.name = y.var.name,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,

despike 105

window.width = 11,
method = "run.mean",
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

106 despike

S3 method for class 'raw_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

z.threshold numeric Modified Z values larger than z.threshold are considered to corre-
spond to spikes.

max.spike.width

integer Wider regions with high Z values are not detected as spikes.

window.width integer. The full width of the window used for the running mean used as re-
placement.

method character The name of the method: "run.mean" is running mean as described
in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso-
lated bad pixels only).

na.rm logical indicating whether NA values should be treated as spikes and replaced.

... Arguments passed by name to find_spikes().
var.name, y.var.name

character Names of columns where to look for spikes to remove.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

despike 107

Simple interpolation replaces values of isolated bad pixels by the mean of their two closest neigh-
bors. The running mean approach allows the replacement of short runs of bad pixels by the running
mean of neighboring pixels within a window of user-specified width. The first approach works well
for spectra from array spectrometers to correct for hot and dead pixels in an instrument. The second
approach is most suitable for Raman spectra in which spikes triggered by radiation are wider than a
single pixel but usually not more than five pixels wide.

When the argument passed to x contains multiple spectra, the spikes are searched for and replaced
in each spectrum independently of other spectra.

Value

A copy of the object passed as argument to x with values detected as spikes replaced by a local
average of adjacent neighbors outside the spike.

Methods (by class)

• despike(default): Default returning always NA.
• despike(numeric): Default function usable on numeric vectors.
• despike(data.frame): Method for "data.frame" objects.
• despike(generic_spct): Method for "generic_spct" objects.
• despike(source_spct): Method for "source_spct" objects.
• despike(response_spct): Method for "response_spct" objects.
• despike(filter_spct): Method for "filter_spct" objects.
• despike(reflector_spct): Method for "reflector_spct" objects.
• despike(solute_spct): Method for "solute_spct" objects.
• despike(cps_spct): Method for "cps_spct" objects.
• despike(raw_spct): Method for "raw_spct" objects.
• despike(generic_mspct): Method for "generic_mspct" objects.
• despike(source_mspct): Method for "source_mspct" objects.
• despike(response_mspct): Method for "cps_mspct" objects.
• despike(filter_mspct): Method for "filter_mspct" objects.
• despike(reflector_mspct): Method for "reflector_mspct" objects.
• despike(solute_mspct): Method for "solute_mspct" objects.
• despike(cps_mspct): Method for "cps_mspct" objects.
• despike(raw_mspct): Method for "raw_mspct" objects.

Note

Current algorithm misidentifies steep smooth slopes as spikes, so manual inspection is needed to-
gether with adjustment by trial and error of a suitable argument value for z.threshold.

See Also

See the documentation for find_spikes and replace_bad_pixs for details of the algorithm and
implementation.

108 diffraction_single_slit

Examples

white_led.raw_spct[120:125,]

find and replace spike at 245.93 nm
despike(white_led.raw_spct,

z.threshold = 10,
window.width = 25)[120:125,]

diffraction_single_slit

Diffraction

Description

Diffraction of optical radiation passing through a single slit can be computed with function diffraction_single_slit(),
which implements Fraunhofer’s equation. Diffraction plus interference for a pair of slits can be
computed with diffraction_double_slit().

Usage

diffraction_single_slit(w.length, slit.width, angle)

diffraction_double_slit(w.length, slit.width, slit.distance, angle)

Arguments

w.length numeric Wavelength (nm).

slit.width numeric Width of the slit (m).

angle numeric vector Angle (radians).

slit.distance numeric Distance between the centres of the two slits (m).

Value

A numeric vector of the same length as angle, containing relative intensities.

Examples

diffraction_single_slit(w.length = 550,
slit.width = 1e-5,
angle = 0)

use odd number for length.out so that 0 is in the sequence
angles <- pi * seq(from = -1/2, to = 1/2, length.out = 501)

plot(angles,
diffraction_single_slit(w.length = 550, # 550 nm

dim.generic_mspct 109

slit.width = 6e-6, # 6 um
angle = angles),

type = "l",
ylab = "Relative irradiance (/1)",
xlab = "Angle (radian)")

plot(angles,
diffraction_double_slit(w.length = 550, # 550 nm

slit.width = 6e-6, # 6 um
slit.distance = 18e-6, # 18 um
angle = angles),

type = "l",
ylab = "Relative irradiance (/1)",
xlab = "Angle (radian)")

dim.generic_mspct Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

S3 method for class 'generic_mspct'
dim(x)

S3 replacement method for class 'generic_mspct'
dim(x) <- value

Arguments

x A generic_mspct object or of a derived class.

value Either NULL or a numeric vector, which is coerced to integer (by truncation).

Value

Either NULL or a numeric vector, which is coerced to integer (by truncation).

110 div_spectra

div-.generic_spct Arithmetic Operators

Description

Integer-division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %/% e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

div_spectra Divide two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are operated upon.

Usage

div_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

div_spectra 111

Arguments

w.length1 numeric vector of wavelength (nm) of denominator.

w.length2 numeric vector of wavelength (nm) of divisor.

s.irrad1 a numeric vector of spectral values of denominator.

s.irrad2 a numeric vector of spectral values of divisor.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a dataframe with two numeric variables.

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the ratio between the two spectral values at each wave-
length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
one.data <- with(sun.data, div_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(one.data)
tail(one.data)

112 drop_user_cols

drop_user_cols Drop user columns

Description

Remove from spectral object additional columns that are user defined.

Usage

drop_user_cols(x, keep.also, ...)

Default S3 method:
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'generic_spct'
drop_user_cols(x, keep.also, ...)

S3 method for class 'source_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'response_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'object_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'filter_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'reflector_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'solute_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'chroma_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'calibration_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'cps_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'raw_spct'
drop_user_cols(x, keep.also = NULL, ...)

e2q 113

S3 method for class 'generic_mspct'
drop_user_cols(x, keep.also = NULL, ...)

Arguments

x An R object

keep.also character Additionlal columns to preserve.

... needed to allow derivation.

Value

A copy of x possibly with some columns removed.

Methods (by class)

• drop_user_cols(default):

• drop_user_cols(generic_spct):

• drop_user_cols(source_spct):

• drop_user_cols(response_spct):

• drop_user_cols(object_spct):

• drop_user_cols(filter_spct):

• drop_user_cols(reflector_spct):

• drop_user_cols(solute_spct):

• drop_user_cols(chroma_spct):

• drop_user_cols(calibration_spct):

• drop_user_cols(cps_spct):

• drop_user_cols(raw_spct):

• drop_user_cols(generic_mspct):

See Also

Other experimental utility functions: collect2mspct(), thin_wl(), uncollect2spct()

e2q Convert energy-based quantities into photon-based quantities.

Description

Conversion methods for spectral energy irradiance into spectral photon irradiance and for spectral
energy response into spectral photon response.

114 e2q

Usage

e2q(x, action, byref, ...)

Default S3 method:
e2q(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_spct'
e2q(x, action = "add", byref = FALSE, ...)

S3 method for class 'response_spct'
e2q(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_mspct'
e2q(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

S3 method for class 'response_mspct'
e2q(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

Arguments

x an R object.
action a character string, one of "add", "replace", "add.raw" or "replace.raw".
byref logical indicating if a new object will be created by reference or a new object

returned.
... not used in current version.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The converted spectral values are added to or replace the existing spectral values depending on
the argument passed to parameter action. Addition is currently not supported for normalized
spectra. If the spectrum has been normalized with a recent version of package ’photobiology’ the
spectrum will be renormalized after conversion using the same arguments as previously. "add.raw"
and "replace.raw" prevent the re-normalization, are included for completeness and as a way of
restoring previous behaviour.

Methods (by class)

• e2q(default): Default method
• e2q(source_spct): Method for spectral irradiance
• e2q(response_spct): Method for spectral responsiveness
• e2q(source_mspct): Method for collections of (light) source spectra
• e2q(response_mspct): Method for collections of response spectra

e2qmol_multipliers 115

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

e2qmol_multipliers Calculate energy to quantum (mol) multipliers

Description

Multipliers as a function of wavelength, for converting from energy to photon (quantum) molar
units.

Usage

e2qmol_multipliers(w.length)

Arguments

w.length numeric Vector of wavelengths (nm)

Value

A numeric vector of multipliers

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2quantum_multipliers(), q2e()

Examples

with(sun.data, e2qmol_multipliers(w.length))

e2quantum_multipliers Calculate energy to quantum multipliers

Description

Gives multipliers as a function of wavelength, for converting from energy to photon (quantum) units
(number of photons as default, or moles of photons).

Usage

e2quantum_multipliers(w.length, molar = FALSE)

116 enable_check_spct

Arguments

w.length numeric Vector of wavelengths (nm)

molar logical Flag indicating whether output should be in moles or numbers

Value

A numeric vector of multipliers

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2qmol_multipliers(), q2e()

Examples

with(sun.data, e2quantum_multipliers(w.length))
with(sun.data, e2quantum_multipliers(w.length, molar = TRUE))

enable_check_spct Enable or disable checks

Description

Choose between protection against errors or faster performance by enabling (the default) or dis-
abling data-consistency and sanity checks.

Usage

enable_check_spct()

disable_check_spct()

set_check_spct(x)

Arguments

x logical Flag to enable (TRUE), disable (FALSE) or unset (NULL) option.

Value

The previous value of the option, which can be passed as argument to function set_check_spct()
to restore the previous state of the option.

See Also

Other data validity check functions: check_spct(), check_spectrum(), check_w.length()

energy_as_default 117

energy_as_default Set spectral-data options

Description

Set spectral-data related options easily.

Usage

energy_as_default()

photon_as_default()

quantum_as_default()

Tfr_as_default()

Afr_as_default()

A_as_default()

unset_radiation_unit_default()

unset_filter_qty_default()

unset_user_defaults()

Value

Previous value of the modified option.

energy_irradiance Calculate (energy) irradiance from spectral irradiance

Description

Energy irradiance for a waveband from a radiation spectrum, optionally applying a "biological
spectral weighting function" or BSWF.

Usage

energy_irradiance(
w.length,
s.irrad,
w.band = NULL,

118 energy_irradiance

unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band waveband.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value with no change in scale factor: [W m−2].

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, energy_irradiance(w.length, s.e.irrad))
with(sun.data, energy_irradiance(w.length, s.e.irrad, new_waveband(400,700)))

energy_ratio 119

energy_ratio Energy:energy ratio

Description

Energy irradiance ratio between two wavebands for a radiation spectrum.

Usage

energy_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = NULL

)

Arguments

w.length numeric vector of wavelengths [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band.num waveband object used to compute the numerator of the ratio.

w.band.denom waveband object used to compute the denominator of the ratio.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a single numeric value giving the unitless energy ratio.

Note

The default for both w.band parameters is a waveband covering the whole range of w.length.

120 eq_ratio

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data,
energy_ratio(w.length, s.e.irrad, new_waveband(400,500), new_waveband(400,700)))

eq_ratio Energy:photon ratio

Description

This function returns the energy to mole of photons ratio for each waveband and a light source
spectrum.

Usage

eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

Default S3 method:
eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

S3 method for class 'source_spct'
eq_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[e:q]", ""),
...

)

S3 method for class 'source_mspct'
eq_ratio(
spct,
w.band = NULL,
scale.factor = 1,

eq_ratio 121

wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[e:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct.

w.band waveband or list of waveband objects.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The ratio is based on one photon irradiance and one energy irradiance, both computed for the same
waveband.

I(s, wb)

Q(s, wb)

122 eq_ratio

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.#’ @return Computed values are ratios between energy
irradiance and photon irradiance for a given waveband. A named numeric vector in the case of
methods for individual spectra, with one value for each waveband passed to parameter w.band. A
data.frame in the case of collections of spectra, containing one column for each waveband object,
an index column with the names of the spectra, and optionally additional columns with metadata
values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used, with "[e:q]" prepended. Units [J mol-1].

Value

Computed values are ratios between energy irradiance and photon irradiance for a given waveband.
A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of multiple spectra, containing
one column with ratios for each waveband object, an index column with the names of the spectra,
and optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they are expressed as relative fractions or percentages. In the case of vector output, names attribute
is set to the name of the corresponding waveband unless a named list is supplied in which case the
names of the list members are used, with "[e:q]" prepended. Units [mol J-1].

Methods (by class)

• eq_ratio(default): Default for generic function

• eq_ratio(source_spct): Method for source_spct objects

• eq_ratio(source_mspct): Calculates energy:photon from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), q_fraction(), q_ratio(),
qe_ratio()

ET_ref 123

Examples

eq_ratio(sun.spct,
waveband(c(400,700), wb.name = "White")) # J mol-1

eq_ratio(sun.spct,
waveband(c(400,700), wb.name = "White"),
scale.factor = 1e-6) # J umol-1

ET_ref Evapotranspiration

Description

Compute an estimate of reference (= potential) evapotranspiration from meteorologial data. Evap-
otranspiration from vegetation includes transpiraction by plants plus evaporation from the soil or
other wet surfaces. ET0 is the reference value assuming no limitation to transpiration due to soil
water, similar to potential evapotranspiration (PET). An actual evapotranpiration value ET can be
estimated only if additional information on the plants and soil is available.

Usage

ET_ref(
temperature,
water.vp,
wind.speed,
net.irradiance,
nighttime = FALSE,
atmospheric.pressure = 10.13,
soil.heat.flux = 0,
method = "FAO.PM",
check.range = TRUE

)

ET_ref_day(
temperature,
water.vp,
wind.speed,
net.radiation,
atmospheric.pressure = 10.13,
soil.heat.flux = 0,
method = "FAO.PM",
check.range = TRUE

)

124 ET_ref

Arguments

temperature numeric vector of air temperatures (C) at 2 m height.

water.vp numeric vector of water vapour pressure in air (Pa).

wind.speed numeric Wind speed (m/s) at 2 m height.

net.irradiance numeric Long wave and short wave balance (W/m2).

nighttime logical Used only for methods that distinguish between daytime- and nighttime
canopy conductances.

atmospheric.pressure

numeric Atmospheric pressure (Pa).

soil.heat.flux numeric Soil heat flux (W/m2), positive if soil temperature is increasing.

method character The name of an estimation method.

check.range logical Flag indicating whether to check or not that arguments for temperature
are within range of method. Passed to function calls to water_vp_sat() and
water_vp_sat_slope().

net.radiation numeric Long wave and short wave balance (J/m2/day).

Details

Currently three methods, based on the Penmann-Monteith equation formulated as recommended by
FAO56 (Allen et al., 1998) as well as modified in 2005 for tall and short vegetation according to
ASCE-EWRI are implemented in function ET_ref(). The computations rely on data measured ac-
cording WHO standards at 2 m above ground level to estimate reference evapotranspiration (ET0).
The formulations are those for ET expressed in mm/h, but modified to use as input flux rates in
W/m2 and pressures expressed in Pa.

Value

A numeric vector of reference evapotranspiration estimates expressed in mm/h for ET_ref() and
ET_PM() and in mm/d for ET_ref_day().

References

Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration: Guidelines for computing
crop water requirements. Rome: FAO. Allen R G, Pruitt W O, Wright J L, Howell T A, Ventura
F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry J, et al. 2006. A recommendation on
standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-
Monteith method. Agricultural Water Management 81.

See Also

Other Evapotranspiration and energy balance related functions.: net_irradiance()

ET_ref 125

Examples

instantaneous
ET_ref(temperature = 20,

water.vp = water_RH2vp(relative.humidity = 70,
temperature = 20),

wind.speed = 0,
net.irradiance = 10)

ET_ref(temperature = c(5, 20, 35),
water.vp = water_RH2vp(70, c(5, 20, 35)),
wind.speed = 0,
net.irradiance = 10)

Hot and dry air
ET_ref(temperature = 35,

water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400)

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "FAO.PM")

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "ASCE.PM.short")

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "ASCE.PM.tall")

Low temperature and high humidity
ET_ref(temperature = 5,

water.vp = water_RH2vp(95, 5),
wind.speed = 0.5,
net.irradiance = -10,
nighttime = TRUE,
method = "ASCE.PM.short")

ET_ref_day(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.radiation = 35e6) # 35 MJ / d / m2

126 Extract

Extract Extract or replace parts of a spectrum

Description

Just like extraction and replacement with indexes in base R, but preserving the special attributes
used in spectral classes and checking for validity of remaining spectral data.

Usage

S3 method for class 'generic_spct'
x[i, j, drop = NULL]

S3 method for class 'raw_spct'
x[i, j, drop = NULL]

S3 method for class 'cps_spct'
x[i, j, drop = NULL]

S3 method for class 'source_spct'
x[i, j, drop = NULL]

S3 method for class 'response_spct'
x[i, j, drop = NULL]

S3 method for class 'filter_spct'
x[i, j, drop = NULL]

S3 method for class 'reflector_spct'
x[i, j, drop = NULL]

S3 method for class 'solute_spct'
x[i, j, drop = NULL]

S3 method for class 'object_spct'
x[i, j, drop = NULL]

S3 method for class 'chroma_spct'
x[i, j, drop = NULL]

S3 replacement method for class 'generic_spct'
x[i, j] <- value

S3 replacement method for class 'generic_spct'
x$name <- value

Extract 127

Arguments

x spectral object from which to extract element(s) or in which to replace ele-
ment(s)

i index for rows,

j index for columns, specifying elements to extract or replace. Indices are numeric
or character vectors or empty (missing) or NULL. Please, see Extract for more
details.

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is FALSE unless the result is a single column.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ’Environments’) partially matched to the names of
the object.

Details

These methods are just wrappers on the method for data.frame objects which copy the additional
attributes used by these classes, and validate the extracted object as a spectral object. When drop
is TRUE and the returned object has only one column, then a vector is returned. If the extracted
columns are more than one but do not include w.length, a data frame is returned instead of a
spectral object.

Value

An object of the same class as x but containing only the subset of rows and columns that are selected.
See details for special cases.

Note

If any argument is passed to j, even TRUE, some metadata attributes are removed from the returned
object. This is how the extraction operator works with data.frames in R. For the time being we
retain this behaviour for spectra, but it may change in the future.

See Also

subset and trim_spct

Examples

sun.spct[sun.spct[["w.length"]] > 400,]
subset(sun.spct, w.length > 400)

tmp.spct <- sun.spct
tmp.spct[tmp.spct[["s.e.irrad"]] < 1e-5 , "s.e.irrad"] <- 0
e2q(tmp.spct[, c("w.length", "s.e.irrad")]) # restore data consistency!

128 Extract_mspct

Extract_mspct Extract or replace members of a collection of spectra

Description

Just like extraction and replacement with indexes for base R lists, but preserving the special at-
tributes used in spectral classes.

Usage

S3 method for class 'generic_mspct'
x[i, drop = NULL]

S3 replacement method for class 'generic_mspct'
x[i] <- value

S3 replacement method for class 'generic_mspct'
x$name <- value

S3 replacement method for class 'generic_mspct'
x[[name]] <- value

Arguments

x Collection of spectra object from which to extract member(s) or in which to
replace member(s)

i Index specifying elements to extract or replace. Indices are numeric or character
vectors. Please, see Extract for more details.

drop If TRUE the result is coerced to the lowest possible dimension (see the exam-
ples). This only works for extracting elements, not for the replacement.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ’Environments’) partially matched to the names of
the object.

Details

This method is a wrapper on base R’s extract method for lists that sets additional attributes used by
these classes.

Value

An object of the same class as x but containing only the subset of members that are selected.

e_fluence 129

e_fluence Energy fluence

Description

Energy fluence for one or more wavebands of a light source spectrum and a duration of the exposure.

Usage

e_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
e_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
e_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

130 e_fluence

S3 method for class 'source_mspct'
e_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object
w.band a list of waveband objects or a waveband object
exposure.time lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded
use.cached.mult

logical indicating whether multiplier values should be cached between calls
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error

... other arguments (possibly ignored)
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

e_fraction 131

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The exposure.time is copied to the output as an attribute. Units are as follows: (J) joules
per exposure.

Methods (by class)

• e_fluence(default): Default for generic function

• e_fluence(source_spct): Calculate energy fluence from a source_spct object and the
duration of the exposure.

• e_fluence(source_mspct): Calculates energy fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_irrad(), fluence(), irrad(), q_fluence(), q_irrad()

Examples

library(lubridate)
e_fluence(sun.spct, w.band = waveband(c(400,700)),

exposure.time = lubridate::duration(3, "minutes"))

e_fraction Energy:energy fraction

Description

This function returns the energy fraction for a given pair of wavebands of a light source spectrum.

Usage

e_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,

132 e_fraction

use.cached.mult,
use.hinges,
...

)

Default S3 method:
e_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'source_spct'
e_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'source_mspct'
e_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[e:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,

e_fraction 133

.paropts = NULL
)

Arguments

spct source_spct

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the fraction is based on two energy irradiances, one com-
puted for each waveband.

E(s, wbnum)

E(s, wbdenom) + E(s, wbnum)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral energy irradiances, one computed for each waveband.

134 e_fraction

Qλ(s, wbnum)

Qλ(s, wbdenom) +Qλ(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[e:e]" is appended if quantity = "total" and "[e(wl):e(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• e_fraction(default): Default for generic function

• e_fraction(source_spct): Method for source_spct objects

• e_fraction(source_mspct): Calculates energy:energy fraction from a source_mspct ob-
ject.

Note

Recycling for wavebands takes place when the number of denominator and denominator wavebands
differ. The last two parameters control speed optimizations. The defaults should be suitable in
most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the
same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be
aware that you are responsible for ensuring that the wavelengths are the same in each call, as the
only test done is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_ratio(), eq_ratio(), q_fraction(), q_ratio(),
qe_ratio()

Examples

e_fraction(sun.spct, new_waveband(400,700), new_waveband(400,500))

e_irrad 135

e_irrad Energy irradiance

Description

Energy irradiance for one or more wavebands of a light source spectrum.

Usage

e_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
e_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
e_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),

136 e_irrad

naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
e_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band a list of waveband objects or a waveband object.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

e_irrad 137

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If units are absolute and time.unit is second, [W m-2
nm-1] -> [W m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [J m-2]; if units are relative, fraction of
one or percent.

Methods (by class)

• e_irrad(default): Default for generic function

• e_irrad(source_spct): Calculates energy irradiance from a source_spct object.

• e_irrad(source_mspct): Calculates energy irradiance from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), fluence(), irrad(), q_fluence(), q_irrad()

138 e_ratio

Examples

e_irrad(sun.spct, waveband(c(400,700)))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

e_ratio Energy:energy ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

Usage

e_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
e_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

e_ratio 139

S3 method for class 'source_spct'
e_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'source_mspct'
e_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[e:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct
w.band.num waveband object or a list of waveband objects used to compute the numerator(s)

of the ratio(s).
w.band.denom waveband object or a list of waveband objects used to compute the denomina-

tor(s) of the ratio(s).
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded
use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

140 e_ratio

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the ratio is based on two energy irradiances, one computed
for each waveband.

I(s, wbnum)

I(s, wbdenom)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Iλ(s, wbnum)

Iλ(s, wbdenom)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

e_response 141

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[e:e]" is appended if quantity = "total" and "[e(wl):e(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Methods (by class)

• e_ratio(default): Default for generic function

• e_ratio(source_spct): Method for source_spct objects

• e_ratio(source_mspct): Calculates energy:energy ratio from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), eq_ratio(), q_fraction(), q_ratio(),
qe_ratio()

Examples

e_ratio(sun.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(400,700), wb.name = "White"))

e_response Energy-based photo-response

Description

This function returns the mean, total, or contribution of response for each waveband and a response
spectrum.

142 e_response

Usage

e_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

Default S3 method:
e_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

S3 method for class 'response_spct'
e_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'
e_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,

e_response 143

attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.
w.band waveband or list of waveband objects or a numeric vector of length two. The

waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded.
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

144 FEL_spectrum

Methods (by class)

• e_response(default): Default method for generic function

• e_response(response_spct): Method for response spectra.

• e_response(response_mspct): Calculates energy response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: q_response(), response()

Examples

e_response(ccd.spct, new_waveband(200,300))
e_response(photodiode.spct)

FEL_spectrum Incandescent "FEL" lamp emission spectrum

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example
from a lamp calibration certificate).

Usage

FEL_spectrum(w.length, k = photobiology::FEL.BN.9101.165, fill = NA_real_)

Arguments

w.length numeric vector of wavelengths (nm) for output

k a numeric vector with n constants for the function

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range 250 nm to 900 nm. If NULL then the tails are deleted. If 0 then the tails
are set to zero, etc. NA is default.

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irra-
diance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

findMultipleWl 145

Note

This is function is valid for wavelengths in the range 250 nm to 900 nm, for wavelengths outside
this range NAs are returned.

Examples

FEL_spectrum(400)
FEL_spectrum(250:900)

findMultipleWl Find repeated w.length values

Description

Find repeated w.length values

Usage

findMultipleWl(x, same.wls = TRUE)

Arguments

x a generic_spct object

same.wls logical If TRUE all spectra spected to share same w.length values.

Value

integer Number of spectra, guessed from the number of copies of each individual w.length value.

find_peaks Find peaks in a spectrum

Description

This function finds all peaks (local maxima) in a spectrum, using a user provided size threshold rel-
ative to the tallest peak (global maximum) bellow which found peaks are ignored—i.e., not included
in the returned value. This is a wrapper built on top of function peaks() from package ’splus2R’.

Usage

find_peaks(x, ignore_threshold = 0, span = 3, strict = TRUE, na.rm = FALSE)

146 find_spikes

Arguments

x numeric vector
ignore_threshold

numeric Value between 0.0 and 1.0 indicating the relative size compared to
tallest peak threshold below which peaks will be ignored. Negative values set a
threshold so that the tallest peaks are ignored, instead of the shortest.

span integer A peak is defined as an element in a sequence which is greater than all
other elements within a window of width span centered at that element. Use
NULL for the global peak.

strict logical If TRUE, an element must be strictly greater than all other values in its
window to be considered a peak.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local peaks in the data.

Note

This function is a wrapper built on function peaks from splus2R and handles non-finite (including
NA) values differently than splus2R::peaks, instead of giving an error they are replaced with the
smallest finite value in x.

See Also

peaks

Other peaks and valleys functions: find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

with(sun.data, w.length[find_peaks(s.e.irrad)])

find_spikes Find spikes

Description

This function finds spikes in a numeric vector using the algorithm of Whitaker and Hayes (2018).
Spikes are values in spectra that are unusually high or low compared to neighbors. They are usually
individual values or very short runs of similar "unusual" values. Spikes caused by cosmic radiation
are a frequent problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and
diode arrays. Other kinds of accidental "outlayers" will be also detected.

find_spikes 147

Usage

find_spikes(
x,
x.is.delta = FALSE,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE

)

Arguments

x numeric vector containing spectral data.

x.is.delta logical Flag indicating if x contains already differences.

z.threshold numeric Modified Z values larger than z.threshold are considered to be spikes.
max.spike.width

integer Wider regions with high Z values are not detected as spikes.

na.rm logical indicating whether NA values should be stripped before searching for
spikes.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the
data.

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics
and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

with(white_led.raw_spct,
which(find_spikes(counts_3, z.threshold = 30)))

148 find_wls

find_wls Find wavelength values in a spectrum

Description

Find wavelength values corresponding to a target y value in any spectrum. The name of the column
of the spectral data to be used to match the target needs to be passed as argument unless the spectrum
contains a single numerical variable in addition to "w.length".

Usage

find_wls(
x,
target = NULL,
col.name.x = NULL,
col.name = NULL,
.fun = `<=`,
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE

)

Arguments

x an R object

target numeric or character. A numeric value indicates the spectral quantity value for
which wavelengths are to be searched. A character representing a number is con-
verted to a number. A character value representing a number followed by a func-
tion name, will be also accepted and decoded, such that "0.1max" is interpreted
as targetting one tenthof the maximum value in a column. The character strings
"half.maximum" and "HM" are synonyms for "0.5max" while "half.range" and
"HR" are synonyms for "0.5range". These synonyms are converted to the can-
nonical form before saving them to the returned value.

col.name.x character The name of the column in which to the independent variable is stored.
Defaults to "w.length" for objects of class "generic_spct" or derived.

col.name character The name of the column in which to search for the target value.

.fun function A binary comparison function or operator.

interpolate logical Indicating whether the nearest wavelength value in x should be returned
or a value calculated by linear interpolation between wavelength values stradling
the target.

idfactor logical or character Generates an index column of factor type. If idfactor =
TRUE then the column is auto named target.idx. Alternatively the column name
can be directly passed as argument to idfactor as a character string.

na.rm logical indicating whether NA values should be stripped before searching for the
target.

fit_peaks 149

Value

A spectrum object of the same class as x with fewer rows, possibly even no rows. If FALSE is passed
to interpolate a subset of x is returned, otherwise a new object of the same class containing
interpolated wavelenths for the target value is returned.

Note

This function is used internally by method wls_at_target(), and these methods should be pre-
ferred in user code and scripts.

Examples

find_wls(white_led.source_spct)
find_wls(white_led.source_spct, target = "0.5max")
find_wls(white_led.source_spct, target = 0.4)
find_wls(white_led.source_spct, target = 0.4, interpolate = TRUE)
find_wls(white_led.source_spct, target = c(0.3, 0.4))
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = "target")
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = TRUE)
find_wls(white_led.source_spct, target = "0.5max")
find_wls(white_led.source_spct, target = "0.05max")
find_wls(white_led.source_spct, target = "0.5range")

led.df <- as.data.frame(white_led.source_spct)
find_wls(led.df)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length")
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = 0.4)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = c(0.3, 0.4))
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = 0.4, idfactor = "target")

fit_peaks Refine position and value of extremes by fitting

Description

Functions implementing fitting of peaks in a class-agnostic way. The fitting refines the location of
peaks and value of peaks based on the location of maxima and minima supplied. This function is to
be used together with find_peaks() or find_valleys().

Usage

fit_peaks(
x,
peaks.idx,

150 fit_peaks

span,
x.col.name = NULL,
y.col.name,
method,
max.span = 5L,
maximum = TRUE,
keep.cols = NULL

)

fit_valleys(
x,
valleys.idx,
span,
x.col.name = NULL,
y.col.name,
method,
max.span = 5L,
maximum = FALSE,
keep.cols = NULL

)

Arguments

x generic_spct or data.frame object.

peaks.idx, valleys.idx
logical or integer Indexes into x selecting global or local extremes.

span odd integer The span used when refining the location of maxima or minima of
x.

x.col.name, y.col.name
character Name of the column of x on which to operate.

method character The method to use for the fit.

max.span odd integer The maximum number of data points used when when refining the
location of maxima and minima.

maximum logical A flag indicating whether to search for maxima or minima.

keep.cols logical Keep unrecognized columns in data frames

Value

An R object of the same class as x containing the fitted values for the peaks, and optionally the
values for at peaks.idx or valleys.idx for other retained columns.

Note

These functions are not meant for everyday use. Use option refine.wl = TRUE of methods peaks()
and valleys() instead.

fluence 151

Examples

peaks <- find_peaks(sun.spct[["s.e.irrad"]], span = 31)
fit_peaks(sun.spct, peaks, span = 31,

y.col.name = "s.e.irrad", method = "spline")

fluence Fluence

Description

Energy or photon fluence for one or more wavebands of a light source spectrum and a duration of
exposure.

Usage

fluence(
spct,
w.band,
unit.out,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
fluence(
spct,
w.band,
unit.out,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
fluence(
spct,
w.band = NULL,

152 fluence

unit.out = getOption("photobiology.radiation.unit", default = "energy"),
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
fluence(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band a list of waveband objects or a waveband object.

unit.out character string with allowed values "energy", and "photon", or its alias "quan-
tum".

exposure.time lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fluence 153

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly used by derived methods).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The time.unit attribute is copied from the spectrum object to the output. Units are as
follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If time.unit is day, [J d-1 m-2 nm-1]
-> [mol d-1 m-2]

Methods (by class)

• fluence(default): Default for generic function
• fluence(source_spct): Calculate photon fluence from a source_spct object and the dura-

tion of the exposure
• fluence(source_mspct): Calculates fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), irrad(), q_fluence(), q_irrad()

Examples

library(lubridate)
fluence(sun.spct,

w.band = waveband(c(400,700)),
exposure.time = lubridate::duration(3, "minutes"))

154 format.tod_time

format.solar_time Encode in a Common Format

Description

Format a solar_time object for pretty printing

Usage

S3 method for class 'solar_time'
format(x, ..., sep = ":")

Arguments

x an R object

... ignored

sep character used as separator

See Also

Other astronomy related functions: day_night(), sun_angles()

format.tod_time Encode in a Common Format

Description

Format a tod_time object for pretty printing

Usage

S3 method for class 'tod_time'
format(x, ..., sep = ":")

Arguments

x an R object

... ignored

sep character used as separator

See Also

Other Time of day functions: as_tod(), print.tod_time()

formatted_range 155

formatted_range Compute range and format it

Description

Compute the range of an R object, and format it as string suitable for printing.

Usage

formatted_range(x, na.rm = TRUE, digits = 3, nsmall = 2, collapse = "..")

Arguments

x an R object

na.rm logical, indicating if NA’s should be omitted.

digits, nsmall numeric, passed to same name parameters of format().

collapse character, passed to same name parameter of paste().

See Also

range, format and paste.

Examples

formatted_range(c(1, 3.5, -0.01))

fscale Rescale a spectrum using a summary function

Description

These methods return a spectral object of the same class as the one supplied as argument but with the
spectral data rescaled based on a summary function f applied over a specific range of wavelengths
and a target value for the summary value. When the object contains multiple spectra, the rescaling
is applied separately to each spectrum.

156 fscale

Usage

fscale(x, ...)

Default S3 method:
fscale(x, ...)

S3 method for class 'source_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...

)

S3 method for class 'response_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...

)

S3 method for class 'filter_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
set.scaled = target == 1,
...

)

S3 method for class 'reflector_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...

fscale 157

)

S3 method for class 'solute_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...

)

S3 method for class 'raw_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)

S3 method for class 'cps_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)

S3 method for class 'generic_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
col.names,
...

)

S3 method for class 'source_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
fscale(
x,
range = NULL,
f = "mean",

158 fscale

target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
fscale(

fscale 159

x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... additional named arguments passed down to f.

range numeric. An R object on which range() returns a numeric vector of length 2
with the limits of a range of wavelengths in nm, with min and max wavelengths
(nm)

f character string. "mean" or "total" for scaling so that this summary value be-
comes 1 for the returned object, or the name of a function taking x as first argu-
ment and returning a numeric value.

target numeric A constant used as target value for scaling.

unit.out character. Allowed values "energy", and "photon", or its alias "quantum".

160 fscale

set.scaled logical or NULL Flag indicating if the data is to be marked as "scaled" or not.

qty.out character. Allowed values "transmittance", and "absorbance".

col.names character vector containing the names of columns or variables to which to apply
the scaling.

.parallel logical if TRUE, apply function in parallel, using parallel backend provided by
foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

After scaling, calling the function passed as argument to f with the scaled spectrum as argument,
will return the value passed as argument to target. The default for set.scaled depends dynam-
ically on the value passed to target. Sometimes we rescale a spectrum to a "theoretical" value
for the summary, while in other cases we rescale the spectrum to a real-world target value of, e.g.,
a reference energy irradiance. In the first case we say that the data are expressed in relative units,
while in the second case we retain actual physical units. To indicate this, the default argument for
‘set.scaled‘ is TRUE when target == 1, assuming the first of these two situations, and false oth-
erwise, assuming the second situation. These defaults can be overriden with an explicit logical
argument passed to set.scaled. Scaling overrides any previous normalization with the spectrum
tagged as not normalized.

Method fscale is implemented for solute_spct objects but as the spectral data stored in them
are a description of an intensive property of a substance, scaling is unlikely to useful. To represent
solutions of specific concentrations of solutes, filter_spct objects should be used instead.

Value

A copy of the object passed as argument to x with the original spectral data values replaced with
rescaled values, and the "scaled" attribute set to a list describing the scaling applied.

a new object of the same class as x.

Methods (by class)

• fscale(default): Default for generic function

• fscale(source_spct):

• fscale(response_spct):

• fscale(filter_spct):

• fscale(reflector_spct):

• fscale(solute_spct):

• fscale(raw_spct):

• fscale(cps_spct):

• fscale(generic_spct):

• fscale(source_mspct):

fshift 161

• fscale(response_mspct):

• fscale(filter_mspct):

• fscale(reflector_mspct):

• fscale(solute_mspct):

• fscale(raw_mspct):

• fscale(cps_mspct):

• fscale(generic_mspct):

Important changes

Metadata describing the rescaling operation are stored in an attribute only if set.scaled = TRUE
is passed to the call. The exact format and data stored in the attribute "scaled" has changed
during the development history of the package. Spectra re-scaled with earlier versions will lack
some information. To obtain the metadata in a consistent format irrespective of this variation use
accessor getScaling(), which fills missing fields with NA.

See Also

Other rescaling functions: fshift(), getNormalized(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

fscale(sun.spct)
fscale(sun.spct, f = "mean") # same as default
fscale(sun.spct, f = "mean", na.rm = TRUE)
fscale(sun.spct, range = c(400, 700)) # default is whole spectrum
fscale(sun.spct, f = "e_irrad", range = c(400, 700))
s400.spct <- fscale(sun.spct,

f = e_irrad,
range = c(400, 700),
target = 400) # a target in W m-2

s400.spct
e_irrad(s400.spct, c(400, 700))

fshift Shift the scale of a spectrum using a summary function

Description

The fshift() methods return a spectral object of the same class as the one supplied as argument
but with the spectral data on a zero-shifted scale. A range of wavelengths is taken as a zero reference
and the summary calculated with f for this waveband is substracted. This results in a zero shift (=
additive correction) to the values in the returned object. Metadata attributes are retained unchanged.

162 fshift

Usage

fshift(x, ...)

Default S3 method:
fshift(x, ...)

S3 method for class 'source_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "min", qty.out = NULL, ...)

S3 method for class 'source_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'raw_spct'
fshift(
x,

fshift 163

range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
qty.out = NULL,
...

)

S3 method for class 'cps_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
qty.out = NULL,
...

)

S3 method for class 'generic_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "mean", col.names, ...)

S3 method for class 'response_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = NULL,
...,
.parallel = FALSE,

164 fshift

.paropts = NULL
)

S3 method for class 'raw_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... additional named arguments passed down to f.

range An R object on which range() returns a numeric vector of length 2 with the
limits of a range of wavelengths in nm, with min and max wavelengths (nm)

f character string "mean", "min" or "max" for scaling so that this summary value
becomes the origin of the spectral data scale in the returned object, or the name
of a function taking x as first argument and returning a numeric value.

unit.out character Allowed values "energy", and "photon", or its alias "quantum"

qty.out character Allowed values "transmittance", and "absorbance"

col.names character vector containing the names of columns or variables to which to apply
the scale shift.

fshift 165

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with the spectral data values replaced with values zero-shifted.

a new object of the same class as x.

Methods (by class)

• fshift(default): Default for generic function

• fshift(source_spct):

• fshift(response_spct):

• fshift(filter_spct):

• fshift(reflector_spct):

• fshift(source_mspct):

• fshift(raw_spct):

• fshift(cps_spct):

• fshift(generic_spct):

• fshift(response_mspct):

• fshift(filter_mspct):

• fshift(reflector_mspct):

• fshift(raw_mspct):

• fshift(cps_mspct):

• fshift(generic_mspct):

Note

Method fshift is not implemented for solute_spct objects as the spectral data stored in them are
a description of an intensive property of a substance. To represent solutions of specific concentra-
tions of solutes, filter_spct objects can be used.

See Also

Other rescaling functions: fscale(), getNormalized(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

166 generic_mspct

generic_mspct Collection-of-spectra constructor

Description

Converts a list of spectral objects into a "multi spectrum" object by setting the class attribute of the
list of spectra to the corresponding multi-spct class, check that components of the list belong to the
expected class.

Usage

generic_mspct(
l = NULL,
class = "generic_spct",
ncol = 1,
byrow = FALSE,
dim = c(length(l)%/%ncol, ncol)

)

calibration_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

raw_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

cps_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

source_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

filter_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

reflector_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

object_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

solute_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

response_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

chroma_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

Arguments

l list of generic_spct or derived classes

class character The multi spectrum object class or the expected class for the elements
of l

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

getFilterProperties 167

dim integer vector of dimensions

... ignored

Functions

• calibration_mspct(): Specialization for collections of calibration_spct objects.

• raw_mspct(): Specialization for collections of raw_spct objects.

• cps_mspct(): Specialization for collections of cps_spct objects.

• source_mspct(): Specialization for collections of source_spct objects.

• filter_mspct(): Specialization for collections of filter_spct objects.

• reflector_mspct(): Specialization for collections of reflector_spct objects.

• object_mspct(): Specialization for collections of object_spct objects.

• solute_mspct(): Specialization for collections of solute_spct objects.

• response_mspct(): Specialization for collections of response_spct objects.

• chroma_mspct(): Specialization for collections of chroma_spct objects.

Note

Setting class = source_spct or class = source_mspct makes no difference

Examples

filter_mspct(list(polyester.spct, yellow_gel.spct))

getFilterProperties Get the "filter.properties" attribute

Description

Function to read the "filter.properties" attribute of an existing filter_spct or a filter_mspct.

Usage

getFilterProperties(x, return.null, ...)

filter_properties(x, return.null, ...)

Default S3 method:
getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'filter_spct'
getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'summary_filter_spct'

168 getFilterProperties

getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'generic_mspct'
getFilterProperties(x, return.null = FALSE, ..., idx = "spct.idx")

Arguments

x a filter_spct object

return.null logical If true, NULL is returned if the attribute is not set, otherwise the expected
list is returned with all fields set to NA.

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a list with fields named "Rfr.constant" [/1], "thickness" [m] and "attenuation.mode". If the
attribute is not set, and return.null is FALSE, a list with fields set to NA is returned, otherwise,
NULL.

Methods (by class)

• getFilterProperties(default): default

• getFilterProperties(filter_spct): generic_spct

• getFilterProperties(summary_filter_spct): summary_generic_spct

• getFilterProperties(generic_mspct): filter_mspct

Note

The method for collections of spectra returns the a tibble with a column of lists.

See Also

Other measurement metadata functions: add_attr2tb(), getHowMeasured(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

filter_properties(polyester.spct)

getHowMeasured 169

getHowMeasured Get the "how.measured" attribute

Description

Function to read the "how.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

getHowMeasured(x, ...)

how_measured(x, ...)

Default S3 method:
getHowMeasured(x, ...)

S3 method for class 'generic_spct'
getHowMeasured(x, ...)

S3 method for class 'summary_generic_spct'
getHowMeasured(x, ...)

S3 method for class 'generic_mspct'
getHowMeasured(x, ..., idx = "spct.idx")

Arguments

x a generic_spct object

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

character vector An object containing a description of the data.

Methods (by class)

• getHowMeasured(default): default

• getHowMeasured(generic_spct): generic_spct

• getHowMeasured(summary_generic_spct): summary_generic_spct

• getHowMeasured(generic_mspct): generic_mspct

Note

The method for collections of spectra returns the a tibble with a column of character strings.

170 getIdFactor

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

how_measured(sun.spct)

getIdFactor Get the "idfactor" attribute

Description

Function to read the idfactor attribute of an existing generic_spct.

Usage

getIdFactor(x)

id_factor(x)

Arguments

x a generic_spct object

Value

character

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other idfactor attribute functions: setIdFactor()

Examples

id_factor(sun_evening.spct)

getInstrDesc 171

getInstrDesc Get the "instr.desc" attribute

Description

Function to read the "instr.desc" attribute of an existing generic_spct object.

Usage

getInstrDesc(x)

instr_descriptor(x)

Arguments

x a generic_spct object

Value

list (depends on instrument type)

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

getInstrSettings Get the "instr.settings" attribute

Description

Function to read the "instr.settings" attribute of an existing generic_spct object.

Usage

getInstrSettings(x)

instr_settings(x)

Arguments

x a generic_spct object

172 getKType

Value

list

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

getKType Get the "K.type" attribute

Description

Function to read the "K.type" attribute of an existing solute_spct object.

Usage

getKType(x)

Arguments

x a solute_spct object

Value

character string

Note

If x is not a solute_spct or a summary_solute_spct object, NA is returned.

See Also

Other K attribute functions: setKType()

Examples

print("missing example")

getMspctVersion 173

getMspctVersion Get the "mspct.version" attribute

Description

Function to read the "mspct.version" attribute of an existing generic_mspct object.

Usage

getMspctVersion(x)

Arguments

x a generic_mspct object

Value

numeric value

Note

if x is not a generic_mspct object, NA is returned, and if it the attribute is missing, zero is returned
with a warning.

getMultipleWl Get the "multiple.wl" attribute

Description

Function to query the value of the multiple.wl attribute of an existing generic_spct.

Usage

getMultipleWl(x)

multiple_wl(x)

Arguments

x a generic_spct object

Value

integer value, the value of attribute multiple.wl, or NA if the attribute is not set, or if x is not a
generic_spct object or an object of a derived class.

174 getNormalized

See Also

Other multiple.wl attribute functions: setMultipleWl()

Examples

multiple_wl(sun.spct)
multiple_wl(sun_evening.spct)

getNormalized Query the "normalized" and "normalization" attributes

Description

Functions to read the "normalized" and "normalization" attributes of an existing generic_spct object.

Usage

getNormalized(x, .force.numeric = FALSE)

getNormalised(x, .force.numeric = FALSE)

getNormalization(x)

getNormalisation(x)

Arguments

x a generic_spct object.
.force.numeric logical If TRUE always silently return a numeric value, with FALSE encoded as

zero, and character values as NA.

Details

Spectral data that has been normalized needs to be used diffferently in computations than data
expresed in original units. These two functions make it possible to query if data stored in an object
of class generic_spct or of a derived class contains data expressed in physical units or normalized.
In the later case, it is possible to also query how the normalization was done.

Value

getNormalized() returns numeric or logical (possibly character for objects created with earlier
versions); for collections of spectra, a named list, with one member for each spectrum. If x is not a
generic_spct object, NA or a list with fields set to NAs is returned. Objects created with versions
of package ’photobiology’ earlier than 0.10.8 are lacking the detailed normalization metadata.

getNormalization() returns a list with five fields: norm.type, norm.wl, norm.factors, norm.cols,
norm.range. For collections of spectra, a named list of lists, with one member list for each member
of the collection of spectra. See setNormalized() for the values stored in the fields.

getScaled 175

Note

getNormalised() is a synonym for this getNormalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

getNormalized(sun.spct)
getNormalization(sun.spct)

sun_norm.spct <- normalize(sun.spct)

getNormalized(sun_norm.spct)
getNormalization(sun_norm.spct)

getNormalization(e2q(sun_norm.spct))

gel_norm.spct <- normalize(yellow_gel.spct)

getNormalized(gel_norm.spct)
getNormalization(gel_norm.spct)

getNormalization(T2Afr(gel_norm.spct))
getNormalization(any2A(gel_norm.spct))

getScaled Get the "scaled" attribute

Description

Function to read the "scaled" attribute of an existing generic_spct object.

Usage

getScaled(x, .force.list = FALSE)

getScaling(x)

Arguments

x a generic_spct object

.force.list logical If TRUE always silently return a list, with FALSE encoded field multiplier
= 1.

176 getSoluteProperties

Value

logical

Note

if x is not a filter_spct object, NA is returned

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

scaled.spct <- fscale(sun.spct)
getScaled(scaled.spct)

getSoluteProperties Get the "solute.properties" attribute

Description

Function to read the "solute.properties" attribute of an existing solute_spct or a solute_mspct
objects.

Usage

getSoluteProperties(x, return.null, ...)

solute_properties(x, return.null, ...)

Default S3 method:
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'solute_spct'
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'summary_solute_spct'
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'solute_mspct'
getSoluteProperties(x, return.null = FALSE, ..., idx = "spct.idx")

getSoluteProperties 177

Arguments

x solute_spct A spectrum of coefficients of attenuation.

return.null logical If true, NULL is returned if the attribute is not set, otherwise the expected
list is returned with all fields set to NA.

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a list with fields named "mass", "formula", "structure", "name" and "ID". If the attribute is
not set, and return.null is FALSE, a list with fields set to NA is returned, otherwise, NULL.

Methods (by class)

• getSoluteProperties(default): default

• getSoluteProperties(solute_spct): solute_spct

• getSoluteProperties(summary_solute_spct): summary_solute_spct

• getSoluteProperties(solute_mspct): solute_mspct

Note

The method for collections of spectra returns the a tibble with a column of lists.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

solute_properties(water.spct)

178 getTimeUnit

getSpctVersion Get the "spct.version" attribute

Description

Function to read the "spct.version" attribute of an existing generic_spct object.

Usage

getSpctVersion(x)

Arguments

x a generic_spct object

Value

integer value

Note

if x is not a generic_spct object, NA is returned, and if it the attribute is missing, zero is returned
with a warning.

getTimeUnit Get the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

getTimeUnit(x, force.duration = FALSE)

Arguments

x a source_spct object

force.duration logical If TRUE a lubridate::duration is returned even if the object attribute is a
character string, if no conversion is possible NA is returned.

Value

character string or a lubridate::duration

getWhatMeasured 179

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), convertTimeUnit(),
setTimeUnit()

Examples

getTimeUnit(sun.spct)

getWhatMeasured Get the "what.measured" attribute

Description

Function to read the "what.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

getWhatMeasured(x, ...)

what_measured(x, ...)

Default S3 method:
getWhatMeasured(x, ...)

S3 method for class 'generic_spct'
getWhatMeasured(x, ...)

S3 method for class 'summary_generic_spct'
getWhatMeasured(x, ...)

S3 method for class 'generic_mspct'
getWhatMeasured(x, ..., idx = "spct.idx")

Arguments

x a generic_spct object
... Allows use of additional arguments in methods for other classes.
idx character Name of the column with the names of the members of the collection

of spectra.

Value

character vector An object containing a description of the data.

180 getWhenMeasured

Methods (by class)

• getWhatMeasured(default): default
• getWhatMeasured(generic_spct): generic_spct
• getWhatMeasured(summary_generic_spct): summary_generic_spct
• getWhatMeasured(generic_mspct): generic_mspct

Note

The method for collections of spectra returns the a tibble with a column of character strings.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

what_measured(sun.spct)

getWhenMeasured Get the "when.measured" attribute

Description

Function to read the "when.measured" attribute of an existing generic_spct or a generic_mspct.

Usage

getWhenMeasured(x, ...)

when_measured(x, ...)

Default S3 method:
getWhenMeasured(x, ...)

S3 method for class 'generic_spct'
getWhenMeasured(x, as.df = FALSE, ...)

S3 method for class 'summary_generic_spct'
getWhenMeasured(x, ...)

S3 method for class 'generic_mspct'
getWhenMeasured(x, ..., idx = "spct.idx")

getWhenMeasured 181

Arguments

x a generic_spct object

... Allows use of additional arguments in methods for other classes.

as.df logical If TRUE return a data frame instead of a list, when the value stored in
the attribute is a list.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

POSIXct An object with date and time.

Methods (by class)

• getWhenMeasured(default): default

• getWhenMeasured(generic_spct): generic_spct

• getWhenMeasured(summary_generic_spct): summary_generic_spct

• getWhenMeasured(generic_mspct): generic_mspct

Note

If x is not a generic_spct or an object of a derived class NA is returned.

The method for collections of spectra returns the a tibble with the correct times in TZ = "UTC".

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

when_measured(sun.spct)

182 getWhereMeasured

getWhereMeasured Get the "where.measured" attribute

Description

Function to read the "where.measured" attribute of an existing generic_spct.

Usage

getWhereMeasured(x, ...)

where_measured(x, ...)

Default S3 method:
getWhereMeasured(x, ...)

S3 method for class 'generic_spct'
getWhereMeasured(x, ...)

S3 method for class 'summary_generic_spct'
getWhereMeasured(x, ...)

S3 method for class 'generic_mspct'
getWhereMeasured(x, ..., idx = "spct.idx", .bind.geocodes = TRUE)

Arguments

x a generic_spct object

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

.bind.geocodes logical In the case of collections of spectra if .bind.geocodes = TRUE, the de-
fault, the returned value is a single geocode with one row for each member
spectrum. Otherwise the individual geocode data frames are returned in a list
column within a tibble.

Value

a data.frame with a single row and at least columns "lon" and "lat", unless expand is set to FALSE.

Methods (by class)

• getWhereMeasured(default): default

• getWhereMeasured(generic_spct): generic_spct

• getWhereMeasured(summary_generic_spct): summary_generic_spct

• getWhereMeasured(generic_mspct): generic_mspct

get_attributes 183

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

where_measured(sun.spct)

get_attributes Get the metadata attributes

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband.
Only attributes defined and/or set by package ’photobiology’ for objects of the corresponding class
are returned. Parameter which can be used to subset the list of attributes.

Usage

get_attributes(x, which, ...)

S3 method for class 'generic_spct'
get_attributes(x, which = NULL, allowed = all.attributes, ...)

S3 method for class 'source_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'filter_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'reflector_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'object_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'solute_spct'
get_attributes(x, which = NULL, ...)

184 get_attributes

S3 method for class 'waveband'
get_attributes(x, which = NULL, ...)

Arguments

x a generic_spct object.

which character vector Names of attributes to retrieve.

... currently ignored

allowed character vector Names of attributes accepted by which.

Details

Vectors of character strings passed as argument to which are parsed so that if the first member
string is "-" the remaining members are removed from the allowed; and if it is "=" the remaining
members are used if in allowed. If the first member is none of these three strings, the behaviour
is the same as if the first string is "=". If which is NULL all the attributes in allowed are used. The
string "" means no attributes, and has precedence over any other values in the character vector. The
order of the names of annotations has no meaning: the vector is interpreted as a set except for the
three possible "operators" at position 1.

Value

Named list of attribute values.

Methods (by class)

• get_attributes(generic_spct): generic_spct

• get_attributes(source_spct): source_spct

• get_attributes(filter_spct): filter_spct

• get_attributes(reflector_spct): reflector_spct

• get_attributes(object_spct): object_spct

• get_attributes(solute_spct): solute_spct

• get_attributes(waveband): waveband

See Also

select_spct_attributes

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

get_peaks 185

get_peaks Get peaks and valleys in a spectrum

Description

These functions find peaks (local maxima) or valleys (local minima) in a spectrum, using a user
selectable size threshold relative to the tallest peak (global maximum). This a wrapper built on top
of function peaks from package splus2R.

Usage

get_peaks(
x,
y,
ignore_threshold = 0,
span = 5,
strict = TRUE,
x_unit = "",
x_digits = 3,
na.rm = FALSE

)

get_valleys(
x,
y,
ignore_threshold = 0,
span = 5,
strict = TRUE,
x_unit = "",
x_digits = 3,
na.rm = FALSE

)

Arguments

x numeric

y numeric
ignore_threshold

numeric Value between 0.0 and 1.0 indicating the relative size compared to
tallest peak threshold below which peaks will be ignored. Negative values set a
threshold so that the tallest peaks are ignored, instead of the shortest.

span integer A peak is defined as an element in a sequence which is greater than all
other elements within a window of width span centered at that element. Use
NULL for the global peak.

strict logical If TRUE, an element must be strictly greater than all other values in its
window to be considered a peak.

186 green_leaf.spct

x_unit character Vector of texts to be pasted at end of labels built from x value at peaks.

x_digits numeric Number of significant digits in wavelength label.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

Value

A data frame with variables w.length and s.irrad with their values at the peaks or valleys plus a
character variable of labels.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

with(sun.spct, get_peaks(w.length, s.e.irrad))
with(sun.spct, get_valleys(w.length, s.e.irrad))

green_leaf.spct Green birch leaf reflectance.

Description

A dataset of spectral reflectance expressed as a fraction of one.

Usage

green_leaf.spct

Format

A reflector_spct object with 226 rows and 2 variables

Details

• w.length (nm)

• Rfr (0..1)

References

Aphalo, P. J. & Lehto, T. Effects of light quality on growth and N accumulation in birch seedlings
Tree Physiology, 1997, 17, 125-132

head_tail 187

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, phenylalanine.spct, photodiode.spct, sun.spct,
sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

green_leaf.spct

head_tail Return the First and Last Parts of an Object

Description

Returns the first and last "parts" (rows or members) of a spectrum, dataframe, vector, function, table
or ftable. In other words, the combined output from methods head and tail.

Usage

head_tail(x, n, ...)

Default S3 method:
head_tail(x, n = 3L, ...)

S3 method for class 'data.frame'
head_tail(x, n = 3L, ...)

S3 method for class 'matrix'
head_tail(x, n = 3L, ...)

S3 method for class '`function`'
head_tail(x, n = 6L, ...)

S3 method for class 'table'
head_tail(x, n = 6L, ...)

S3 method for class 'ftable'
head_tail(x, n = 6L, ...)

Arguments

x an R object.

n integer. If positive, n rows or members in the returned object are copied from
each of "head" and "tail" of x. If negative, all except n elements of x from each
of "head" and "tail" are returned.

... arguments to be passed to or from other methods.

188 head_tail

Details

The value returned by head_tail() is equivalent to row binding the the values returned by head()
and tail(), although not implemented in this way. The same specializations as defined in package
’utils’ for head() and tail() have been implemented.

Value

An object (usually) like x but smaller, except when n = 0. For ftable objects x, a transformed
format(x).

Methods (by class)

• head_tail(default):

• head_tail(data.frame):

• head_tail(matrix):

• head_tail(`function`):

• head_tail(table):

• head_tail(ftable):

Note

For some types of input, like functions, the output may be confusing, however, we have opted for
consistency with existing functions. The code is in part a revision of that of head() and tail()
from package ‘utils’. This method is especially useful when checking spectral data, as both ends
are of interest.

head_tail() methods for function, table and ftable classes, are wrappers for head() method.

See Also

head, and compare the examples and the values returned to the examples below.

Examples

head_tail(1:20)
head_tail(1:20, 12)
head_tail(1:20, -7)
head_tail(1:20, -10)
head_tail(letters)
head_tail(sun.spct)
head_tail(sun.spct, 6)
head_tail(sun.data)
head_tail(as.matrix(sun.data))
head_tail(sun_evening.spct)
head_tail(sun_evening.mspct, 1L)

illuminance 189

illuminance Irradiance

Description

Computes illuminance (lux), or the luminous flux incident on a surface, from spectral irradiance
stored in a source_spct object.

Usage

illuminance(spct, std, scale.factor, allow.scaled, ...)

Default S3 method:
illuminance(spct, std, scale.factor, allow.scaled, ...)

S3 method for class 'source_spct'
illuminance(
spct,
std = "CIE2deg",
scale.factor = 1,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
illuminance(
spct,
std = "CIE2deg",
scale.factor = 1,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

std character The luminous efficiency function to use, "CIE2deg" or "CIE10deg".

scale.factor numeric vector of length 1, or the character string exposure.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

190 illuminance

... other arguments (possibly ignored)

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector of length one in the case of methods for individual spectra. A data.frame
in the case of collections of spectra, containing one column with illuminance, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

The time.unit attribute is always second. Units are as follows: if time.unit of the argument
passed to spct is second, [W m-2 nm-1] -> [lx], otherwise average value [lx] for the period un-
less exposure = TRUE.

Methods (by class)

• illuminance(default): Default for generic function

• illuminance(source_spct): Calculates illuminance from a source_spct object.

• illuminance(source_mspct): Calculates illuminance from a source_mspct object.

Note

Formal parameter allow.scaled is used internally for calculation of ratios, as rescaling and nor-
malization do not invalidate the calculation of ratios within one spectrum.

References

Stockman, A. (2019) Cone fundamentals and CIE standards. Current Opinion in Behavioral Sci-
ences, 30, 87-93. doi:10.1016/j.cobeha.2019.06.005

Examples

illuminance(sun.spct)
illuminance(sun.daily.spct)
illuminance(sun.daily.spct, scale.factor = "exposure")
illuminance(sun.daily.spct, scale.factor = 1e-3)

https://doi.org/10.1016/j.cobeha.2019.06.005

insert_hinges 191

insert_hinges Insert wavelength values into spectral data.

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly re-
duces the errors caused by interpolating the weighted irradiance during integration of the effective
spectral irradiance. This is specially true when data have a large wavelength step size.

Usage

insert_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order)

y numeric vector

h a numeric vector giving the wavelengths at which the y values should be inserted
by interpolation, no interpolation is indicated by an empty vector (numeric(0))

Value

a data.frame with variables x and y. Unless the hinge values were already present in y, each inserted
hinge, expands the vectors returned in the data frame by one value.

Note

Insertion is a costly operation but I have tried to optimize this function as much as possible by
avoiding loops. Earlier this function was implemented in C++, but a bug was discovered and I have
now rewritten it using R.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data,
insert_hinges(w.length, s.e.irrad,

c(399.99, 400.00, 699.99, 700.00)))

192 integrate_spct

insert_spct_hinges Insert new wavelength values into a spectrum

Description

Insert new wavelength values into a spectrum interpolating the corresponding spectral data values.

Usage

insert_spct_hinges(spct, hinges = NULL, byref = FALSE)

Arguments

spct an object of class "generic_spct"

hinges numeric vector of wavelengths (nm) at which the s.irrad should be inserted by
interpolation, no interpolation is indicated by an empty vector (numeric(0))

byref logical indicating if new object will be created by reference or by copy of spct

Value

a generic_spct or a derived type with variables w.length and other numeric variables.

Note

Inserting wavelengths values "hinges" immediately before and after a discontinuity in the SWF,
greatly reduces the errors caused by interpolating the weighted irradiance during integration of the
effective spectral irradiance. This is specially true when data has a large wavelength step size.

Examples

insert_spct_hinges(sun.spct, c(399.99,400.00,699.99,700.00))
insert_spct_hinges(sun.spct,

c(199.99,200.00,399.50,399.99,400.00,699.99,
700.00,799.99,1000.00))

integrate_spct Integrate spectral data.

Description

This function gives the result of integrating spectral data over wavelengths.

Usage

integrate_spct(spct)

integrate_xy 193

Arguments

spct generic_spct

Value

One or more numeric values with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]. Each
value in the returned vector corresponds to a variable in the spectral object, except for wavelength.
For non-numeric variables the returned value is NA.

Examples

integrate_spct(sun.spct)

integrate_xy Gives irradiance from spectral irradiance.

Description

This function gives the result of integrating spectral irradiance over wavelengths.

Usage

integrate_xy(x, y)

Arguments

x numeric vector.

y numeric vector.

Value

a single numeric value with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, integrate_xy(w.length, s.e.irrad))

194 interpolate_spct

interpolate_spct Map a spectrum to new wavelength values.

Description

This function gives the result of interpolating spectral data from the original set of wavelengths to a
new one.

Usage

interpolate_spct(spct, w.length.out = NULL, fill = NA, length.out = NULL)

interpolate_mspct(
mspct,
w.length.out = NULL,
fill = NA,
length.out = NULL,
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct generic_spct

w.length.out numeric vector of wavelengths (nm)

fill a value to be assigned to out of range wavelengths

length.out numeric value

mspct an object of class "generic_mspct"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL,
the values in the numeric vector w.length.out are used. If both are not NULL then the range of
w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for
fill prevents extrapolation. If both w.length.out and length.out are NULL the input is returned
as is. If w.length.out has length equal to zero, zero rows from the input are returned.

Value

A new spectral object of the same class as argument spct.

interpolate_spectrum 195

Note

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes
wavelengths outside the input data range from the returned spectrum. A numerical value can be also
be provided as fill. This function calls interpolate_spectrum for each non-wavelength column
in the input spectra object.

Examples

interpolate_spct(sun.spct, 400:500, NA)
interpolate_spct(sun.spct, 400:500, NULL)
interpolate_spct(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_spct(sun.spct, c(400,500), length.out=201)

interpolate_spectrum Calculate spectral values at a different set of wavelengths

Description

Interpolate/re-express spectral irradiance (or other spectral quantity) values at new wavelengths val-
ues. This is a low-level function operating on numeric vectors and called by higher level functions
in the package, such as mathematical operators for classes for spectral data.

Usage

interpolate_spectrum(w.length.in, s.irrad, w.length.out, fill = NA, ...)

Arguments

w.length.in numeric vector of wavelengths (nm).

s.irrad a numeric vector of spectral values.

w.length.out numeric vector of wavelengths (nm).

fill a value to be assigned to out of range wavelengths.

... additional arguments passed to spline().

Value

a numeric vector of interpolated spectral values.

Note

The current version of interpolate uses spline if fewer than 25 data points are available. Otherwise
it uses approx. In the first case a cubic spline is used, in the second case linear interpolation, which
should be faster.

196 interpolate_wl

See Also

splinefun.

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

my.w.length <- 300:700
with(sun.data, interpolate_spectrum(w.length, s.e.irrad, my.w.length))

interpolate_wl Map spectra to new wavelength values.

Description

This function returns the result of interpolating spectral data from the original set of wavelengths to
a new one.

Usage

interpolate_wl(x, w.length.out, fill, length.out, ...)

Default S3 method:
interpolate_wl(x, w.length.out, fill, length.out, ...)

S3 method for class 'generic_spct'
interpolate_wl(x, w.length.out = NULL, fill = NA, length.out = NULL, ...)

S3 method for class 'generic_mspct'
interpolate_wl(
x,
w.length.out = NULL,
fill = NA,
length.out = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

interpolate_wl 197

Arguments

x an R object

w.length.out numeric vector of wavelengths (nm)

fill a value to be assigned to out of range wavelengths

length.out numeric value

... not used

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL,
the values in the numeric vector w.length.out are used. If both are not NULL then the range of
w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for
fill prevents extrapolation.

Value

A new spectral object of the same class as argument spct.

Methods (by class)

• interpolate_wl(default): Default for generic function

• interpolate_wl(generic_spct): Interpolate wavelength in an object of class "generic_spct"
or derived.

• interpolate_wl(generic_mspct): Interpolate wavelength in an object of class "generic_mspct"
or derived.

Note

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes
wavelengths outside the input data range from the returned spectrum. A numerical value can be also
be provided as fill. This function calls interpolate_spectrum for each non-wavelength column
in the input spectra object.

Examples

interpolate_wl(sun.spct, 400:500, NA)
interpolate_wl(sun.spct, 400:500, NULL)
interpolate_wl(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_wl(sun.spct, c(400,500), length.out=201)

198 irrad

irrad Irradiance

Description

This function returns the irradiance for a given waveband of a light source spectrum.

Usage

irrad(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
irrad(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
irrad(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),

irrad 199

use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
irrad(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band waveband or list of waveband objects The waveband(s) determine the region(s)
of the spectrum that are summarized.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before in-
tegration so as to reduce interpolation errors at the boundaries of the wavebands.
If NULL, default is chosen based on data.

200 irrad

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored)

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

If naming = "long" the names generated reflect both quantity and waveband, if naming = "short",
names are based only on the wavebands, and if naming = "none" the returned vector has no names.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2]
or [W m-2 nm-1] -> [W m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2] or [J d-1 m-2
nm-1] -> [J m-2]

Methods (by class)

• irrad(default): Default for generic function

• irrad(source_spct): Calculates irradiance from a source_spct object.

• irrad(source_mspct): Calculates irradiance from a source_mspct object.

Note

Formal parameter allow.scaled is used internally for calculation of ratios, as rescaling and nor-
malization do not invalidate the calculation of ratios.

irradiance 201

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), q_fluence(), q_irrad()

Examples

irrad(sun.spct, waveband(c(400,700)))
irrad(sun.spct, waveband(c(400,700)), "energy")
irrad(sun.spct, waveband(c(400,700)), "photon")
irrad(sun.spct, split_bands(c(400,700), length.out = 3))
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution.pc")

irradiance Photon or energy irradiance from spectral energy or photon irradi-
ance.

Description

Energy or photon irradiance for one or more wavebands of a radiation spectrum.

Usage

irradiance(
w.length,
s.irrad,
w.band = NULL,
unit.out = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

202 irradiance

Arguments

w.length numeric Vector of wavelength [nm].

s.irrad numeric vector of spectral (energy) irradiances [W m−2 nm−1].

w.band waveband or list of waveband objects The waveband(s) determine the region(s)
of the spectrum that are summarized.

unit.out, unit.in
character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value or a vector of numeric values with no change in scale factor: [mol s−1 sm−2 nm−1]
yields [mol s−1 sm−2]

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum() at least once
for your spectrum before using any of the other functions. If you will use repeatedly the same
SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up
by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that
the wavelengths are the same in each call, as the only test done is for the length of the w.length
vector. The is no reason for setting use.cpp.code=FALSE other than for testing the improvement
in speed, or in cases where there is no suitable C++ compiler for building the package.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, irradiance(w.length, s.e.irrad, new_waveband(400,700), "photon"))

irrad_extraterrestrial 203

irrad_extraterrestrial

Extraterrestrial irradiance

Description

Estimate of down-welling solar (short wave) irradiance at the top of the atmosphere above a location
on Earth, computed based on angles, Sun-Earth distance and the solar constant. Astronomical
computations are done with function sun_angles().

Usage

irrad_extraterrestrial(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
solar.constant = "NASA"

)

Arguments

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

solar.constant numeric or character If character, "WMO" or "NASA", if numeric, an irradiance
value in the same units as the value to be returned.

Value

Numeric vector of extraterrestrial irradiance (in W / m2 if solar constant is a character value).

See Also

Function sun_angles.

Examples

library(lubridate)

irrad_extraterrestrial(ymd_hm("2021-06-21 12:00", tz = "UTC"))

irrad_extraterrestrial(ymd_hm("2021-12-21 20:00", tz = "UTC"))

irrad_extraterrestrial(ymd_hm("2021-06-21 00:00", tz = "UTC") + hours(1:23))

204 is.generic_mspct

is.generic_mspct Query class of spectrum objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

is.generic_mspct(x)

is.calibration_mspct(x)

is.raw_mspct(x)

is.cps_mspct(x)

is.source_mspct(x)

is.response_mspct(x)

is.filter_mspct(x)

is.reflector_mspct(x)

is.object_mspct(x)

is.solute_mspct(x)

is.chroma_mspct(x)

is.any_mspct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_mspct.

is.generic_spct 205

Examples

my.mspct <- filter_mspct(list(polyester.spct, yellow_gel.spct))
is.any_mspct(my.mspct)
is.filter_mspct(my.mspct)
is.source_mspct(my.mspct)

is.generic_spct Query class of spectrum objects

Description

Functions to query whether an object is of a given type of spectrum.

Usage

is.generic_spct(x)

is.raw_spct(x)

is.calibration_spct(x)

is.cps_spct(x)

is.source_spct(x)

is.response_spct(x)

is.filter_spct(x)

is.reflector_spct(x)

is.object_spct(x)

is.solute_spct(x)

is.chroma_spct(x)

is.any_spct(x)

Arguments

x an R object.

Value

A logical value, TRUE if the argument passed to x is an object of the queried type of spectrum and
FALSE otherwise.

206 is.old_spct

Note

Derived types also return TRUE for a query for a base type such as generic_spct, following R’s
practice.

Examples

is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
is.generic_spct(sun.spct)

is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
is.generic_spct(sun.spct)

is.old_spct Query if an object has old class names

Description

Query if an object has old class names Query if an object has old class names as used in photobiol-
ogy (>= 0.6.0).

Usage

is.old_spct(object)

Arguments

object an R object

Value

logical

See Also

Other upgrade from earlier versions: upgrade_spct(), upgrade_spectra()

is.solar_time 207

is.solar_time Query class

Description

Query class

Usage

is.solar_time(x)

is.solar_date(x)

Arguments

x an R object.

See Also

Other Local solar time functions: as.solar_date(), print.solar_time(), solar_time()

is.summary_generic_spct

Query class of spectrum summary objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

is.summary_generic_spct(x)

is.summary_raw_spct(x)

is.summary_cps_spct(x)

is.summary_source_spct(x)

is.summary_response_spct(x)

is.summary_filter_spct(x)

is.summary_reflector_spct(x)

208 is.waveband

is.summary_object_spct(x)

is.summary_solute_spct(x)

is.summary_chroma_spct(x)

is.any_summary_spct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_spct.

Examples

sm <- summary(sun.spct)
is.summary_source_spct(sm)

is.waveband Query if it is a waveband

Description

Functions to check if an object is waveband.

Usage

is.waveband(x)

Arguments

x any R object

Value

is.waveband returns TRUE if its argument is a waveband and FALSE otherwise.

isValidInstrDesc 209

isValidInstrDesc Check the "instr.desc" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct object.

Usage

isValidInstrDesc(x)

Arguments

x a generic_spct object

Value

logical TRUE if at least instrument name and serial number is found.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

isValidInstrSettings Check the "instr.settings" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct object.

Usage

isValidInstrSettings(x)

Arguments

x a generic_spct object

Value

logical TRUE if at least integration time data is found.

210 is_absorbance_based

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

is_absorbance_based Query if a spectrum contains absorbance or transmittance data

Description

Functions to query if an filter spectrum contains spectral absorbance data or spectral transmittance
data.

Usage

is_absorbance_based(x)

is_absorptance_based(x)

is_transmittance_based(x)

Arguments

x an R object

Value

is_absorbance_based returns a logical value, TRUE if its argument is a filter_spct object that
contains spectral absorbance data and FALSE otherwise, but returns NA for any other R object, in-
cluding those belonging other generic_spct-derived classes.

is_absorptance_based returns a logical value, if its argument is a filter_spct object, TRUE if
it contains data as spectral absorptance and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes.

is_transmittance_based returns TRUE if its argument is a filter_spct object that contains
spectral transmittance data and FALSE if it does not contain such data, but returns NA for any other
R object, including those belonging other generic_spct-derived classes.

See Also

Other query units functions: is_mole_based(), is_photon_based()

is_effective 211

Examples

is_absorbance_based(polyester.spct)
my.spct <- T2A(polyester.spct)
is.filter_spct(my.spct)
is_absorbance_based(my.spct)

is_absorptance_based(polyester.spct)

is_transmittance_based(polyester.spct)

is_effective Is an R object "effective"

Description

A generic function for querying if a biological spectral weighting function (BSWF) has been applied
to an object or is included in its definition.

Usage

is_effective(x)

Default S3 method:
is_effective(x)

S3 method for class 'waveband'
is_effective(x)

S3 method for class 'generic_spct'
is_effective(x)

S3 method for class 'source_spct'
is_effective(x)

S3 method for class 'summary_generic_spct'
is_effective(x)

S3 method for class 'summary_source_spct'
is_effective(x)

Arguments

x an R object

Value

A logical.

212 is_mole_based

Methods (by class)

• is_effective(default): Default method.

• is_effective(waveband): Is a waveband object defining a method for calculating effective
irradiance.

• is_effective(generic_spct): Does a source_spct object contain effective spectral irra-
diance values.

• is_effective(source_spct): Does a source_spct object contain effective spectral irradi-
ance values.

• is_effective(summary_generic_spct): Method for "summary_generic_spct".

• is_effective(summary_source_spct): Method for "summary_source_spct".

See Also

Other waveband attributes: labels(), normalization()

Examples

is_effective(summary(sun.spct))

is_mole_based Query if a spectrum contains mole or mass based data

Description

Functions to check if an solute attenuation spectrum contains coefficients on expressed on mole of
mass base.

Usage

is_mole_based(x)

is_mass_based(x)

Arguments

x an R object

Value

is_mole_based returns TRUE if its argument is a solute_spct object that contains spectral K.mole
data and FALSE if it contains K.mass data, but returns NA for any other R object, including those be-
longing other generic_spct-derived classes. is_mass_based returns the complement of is_mole_based.

See Also

Other query units functions: is_absorbance_based(), is_photon_based()

is_normalized 213

Examples

print("missing example")

is_normalized Query whether a generic spectrum has been normalized.

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has
been normalized or not after the object was created.

Usage

is_normalized(x)

is_normalised(x)

Arguments

x An R object.

Value

A logical value indicating if x is normalized or not, for collections of spectra, a named list with
logicals as members. If x is not a generic_spct or generic_mspct object the value returned is
NA.

Note

is_normalised() is a synonym for this is_normalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_scaled(),
normalize(), setNormalized(), setScaled()

214 is_photon_based

is_photon_based Query if a spectrum contains photon- or energy-based data.

Description

Functions to query if source_spct and response_spct objects contain photon-based or energy-
based data.

Usage

is_photon_based(x)

is_energy_based(x)

Arguments

x any R object

Value

is_photon_based returns a logical value, TRUE if its argument is a source_spct or a response_spct
object that contains photon base data and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes.

is_energy_based returns a logical value, TRUE if its argument is a source_spct or a response_spct
object that contains energy base data and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes

See Also

Other query units functions: is_absorbance_based(), is_mole_based()

Examples

colnames(sun.spct)
is_photon_based(sun.spct)
my.spct <- sun.spct[, c("w.length", "s.e.irrad")]
is.source_spct(my.spct)
is_photon_based(my.spct)

colnames(sun.spct)
is_energy_based(sun.spct)
my.spct <- sun.spct[, c("w.length", "s.q.irrad")]
is.source_spct(my.spct)
is_energy_based(my.spct)

is_scaled 215

is_scaled Query whether a generic spectrum has been scaled

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has
been rescaled or not after the object was created.

Usage

is_scaled(x)

Arguments

x An R object.

Value

A logical value. If x is not scaled or x is not a generic_spct object the value returned is FALSE.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
normalize(), setNormalized(), setScaled()

Examples

scaled.spct <- fscale(sun.spct)
is_scaled(sun.spct)
is_scaled(scaled.spct)

is_tagged Query if a spectrum is tagged

Description

Functions to check if an spct object contains tags.

Usage

is_tagged(x)

Arguments

x any R object

216 join_mspct

Value

is_tagged returns a logical value, TRUE if its argument is a a spectrum that contains tags and FALSE
if it is an untagged spectrum, but returns NA for any other R object.

See Also

Other tagging and related functions: tag(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

Examples

is_tagged(sun.spct)

join_mspct Join all spectra in a collection

Description

Join all the spectra contained in a homogeneous collection, returning a data frame with spectral-
data columns named according to the names of the spectra in the collection. By default a full join is
done within the overlapping range of wavelengths, after interpolating the spectra to a shared set of
wavelength values, and discarding data for wavelength not shared. Alternatively, filling the spectral
data for wavelengths outside the overlapping range with with NA when data is not available.

Usage

join_mspct(x, type, ...)

Default S3 method:
join_mspct(x, type = "full", ...)

S3 method for class 'generic_mspct'
join_mspct(x, type = "full", col.name, validate.names = TRUE, ...)

S3 method for class 'source_mspct'
join_mspct(x, type = "full", unit.out = "energy", validate.names = TRUE, ...)

S3 method for class 'response_mspct'
join_mspct(x, type = "full", unit.out = "energy", validate.names = TRUE, ...)

S3 method for class 'filter_mspct'
join_mspct(
x,
type = "full",
qty.out = "transmittance",
validate.names = TRUE,
...

join_mspct 217

)

S3 method for class 'reflector_mspct'
join_mspct(x, type = "full", validate.names = TRUE, ...)

S3 method for class 'object_mspct'
join_mspct(x, type = "full", qty.out, validate.names = TRUE, ...)

S3 method for class 'solute_mspct'
join_mspct(x, type = "full", validate.names = TRUE, ...)

Arguments

x generic_mspct object, or an object of a class derived from generic_mspct.

type character Type of join: "inner" (default) or "full". See details for more infor-
mation.

... ignored (possibly used by derived methods).

col.name character, name of the column in the spectra to be preserved, in addition to
"w.length".

validate.names logical A flag to enable (default) or disable validation of column names with
make.names.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

qty.out character Allowed values "transmittance", "absorptance", and "absorbance"
and in the method for object_spct, also "reflectance" (.

Value

A data.frame with the spectra joined by, possibly interpolated, wavelength, with rows sorted by
wavelength (variable w.length) and data columns named according to the names of members in x,
by default made unique and valid.

Methods (by class)

• join_mspct(default):

• join_mspct(generic_mspct):

• join_mspct(source_mspct):

• join_mspct(response_mspct):

• join_mspct(filter_mspct):

• join_mspct(reflector_mspct):

• join_mspct(object_mspct):

• join_mspct(solute_mspct):

Note

Currently only generic_spct, source_mspct, response_mspct, filter_mspct, reflector_mspct,
object_mspct and solute_mspct classes have this method implemented.

218 labels

Examples

my.mspct <- solute_mspct(list(water = water.spct, pha = phenylalanine.spct))
join_mspct(my.mspct, type = "inner")
join_mspct(my.mspct, type = "full")

labels Find labels from "waveband" object

Description

A method specialization that extracts the name and label of objects of class waveband.

Usage

S3 method for class 'waveband'
labels(object, ...)

S3 method for class 'generic_spct'
labels(object, ...)

Arguments

object an object of class "waveband"

... not used in current version

Methods (by class)

• labels(generic_spct):

See Also

Other waveband attributes: is_effective(), normalization()

Examples

labels(sun.spct)

Ler_leaf.spct 219

Ler_leaf.spct Green Arabidopsis leaf reflectance and transmittance.

Description

A dataset of total spectral reflectance and total spectral transmittance expressed as fractions of one
from the upper surface of a leaf of an Arabidopsis thaliana ’Ler’ rosette.

Usage

Ler_leaf.spct

Ler_leaf_rflt.spct

Ler_leaf_trns.spct

Ler_leaf_trns_i.spct

Format

Datasets stored as object_spct, reflector_spct and filter_spct objects, containing transmit-
tance and reflectance data.

An object of class reflector_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
1750 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
1753 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
2401 rows and 3 columns.

Details

• w.length (nm)

• Rfr (0..1)

• Tfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp
module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

220 log

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

Ler_leaf.spct
Ler_leaf_rflt.spct

log Logarithms and Exponentials

Description

Logarithms and Exponentials for Spectra. The functions are applied to the spectral data, not the
wavelengths. The quantity in the spectrum to which the function is applied depends on the class of
x and the current value of output options

Usage

S3 method for class 'generic_spct'
log(x, base = exp(1))

S3 method for class 'generic_spct'
log2(x)

S3 method for class 'generic_spct'
log10(x)

S3 method for class 'generic_spct'
exp(x)

Arguments

x an object of class "generic_spct"

base a positive number: the base with respect to which logarithms are computed.
Defaults to e=exp(1).

Value

An object of the same class as x.

Note

In most cases a logarithm of an spectral quantity will yield off-range values. For this reason unless x
is an object of base class generic_spct, checks will not be passed, resulting in warnings or errors.

make_var_labels 221

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

make_var_labels Column or variable labels

Description

Create a named list of character strings describing the variables contained in a spectrum object.

Usage

make_var_labels(x, ...)

Default S3 method:
make_var_labels(x, ...)

S3 method for class 'source_spct'
make_var_labels(x, ...)

S3 method for class 'response_spct'
make_var_labels(x, ...)

S3 method for class 'filter_spct'
make_var_labels(x, ...)

S3 method for class 'reflector_spct'
make_var_labels(x, ...)

S3 method for class 'object_spct'
make_var_labels(x, ...)

S3 method for class 'solute_spct'
make_var_labels(x, ...)

S3 method for class 'chroma_spct'
make_var_labels(x, ...)

S3 method for class 'calibration_spct'
make_var_labels(x, ...)

S3 method for class 'raw_spct'
make_var_labels(x, ...)

S3 method for class 'cps_spct'
make_var_labels(x, ...)

222 make_var_labels

Arguments

x An object of a class derived from generic_spct.

... Currently ignored.

Details

Objects of classes derived from generic_spct are used to store different types of spectral data.
The data stored in some of the classes needs to be interpreted differently depending on how they
were measured or are expressed and this information is stored in attributes of the objects. In other
cases, even if consistent across different objects, the units of expression may not be obvious to
users. The names of the variables are concise, thus using variable labels makes it possible to make
these features visible when exploring the data. The methods provided do not add the labels, only
supply the character strings. Variable labels are implemented in packages ’labelled’ by setting the
label attribute in each variable (= column) of a data frame or tibble. This is compatible with the
approach used by package ’haven’.

Value

A named list of character strings with one member for each recognized column in x. This list can be
used to set variable labels with methods from package ’labelled’. However, package ’photobiology’
does not natively support variable labels stored in attribute label.

Methods (by class)

• make_var_labels(default):

• make_var_labels(source_spct):

• make_var_labels(response_spct):

• make_var_labels(filter_spct):

• make_var_labels(reflector_spct):

• make_var_labels(object_spct):

• make_var_labels(solute_spct):

• make_var_labels(chroma_spct):

• make_var_labels(calibration_spct):

• make_var_labels(raw_spct):

• make_var_labels(cps_spct):

Note

These methods are still under development and the text of the labels may change. Not all classes
derived from generic_spct are yet supported.

MathFun 223

Examples

make_var_labels(sun.spct)
str() prints more compactly than print()
str(make_var_labels(sun.spct))
str(make_var_labels(normalize(sun.spct)))
str(make_var_labels(fscale(sun.spct)))

str(make_var_labels(sun_daily.spct))

str(make_var_labels(polyester.spct))
str(make_var_labels(normalize(polyester.spct)))
str(make_var_labels(fscale(polyester.spct)))

str(make_var_labels(white_led.cps_spct))
str(make_var_labels(white_led.raw_spct))

MathFun Miscellaneous Mathematical Functions

Description

abs(x) computes the absolute value of x, sqrt(x) computes the (principal) square root of x. The
functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to
which the function is applied depends on the class of x and the current value of output options.

Usage

S3 method for class 'generic_spct'
sqrt(x)

S3 method for class 'generic_spct'
abs(x)

Arguments

x an object of class "generic_spct"

See Also

Other math operators and functions: ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
slash-.generic_spct, times-.generic_spct

224 merge2object_spct

merge2object_spct Merge into object_spct

Description

Merge a filter_spct with a reflector_spct returning an object_spct object, even if wave-
length values are mismatched.

Usage

merge2object_spct(
x,
y,
by = "w.length",
...,
w.length.out = x[["w.length"]],
Tfr.type.out = "total"

)

Arguments

x, y a filter_spct object and a reflector_spct object.

by a vector of shared column names in x and y to merge on; by defaults to w.length.

... other arguments passed to dplyr::inner_join().

w.length.out numeric vector of wavelengths to be used for the returned object (nm).

Tfr.type.out character string indicating whether transmittance values in the returned object
should be expressed as "total" or "internal". This applies only to the case
when an object_spct is returned.

Value

An object_spct is returned as the result of merging a filter_spct and a reflector_spct object.

Note

If a numeric vector is supplied as argument for w.length.out, the two spectra are interpolated to
the new wavelength values before merging. The default argument for w.length.out is x[["w.length"]].

See Also

join

merge_attributes 225

merge_attributes Merge and copy attributes

Description

Merge attributes from x and y and copy them to z. Methods defined for spectral objects of classes
from package ’photobiology’.

Usage

merge_attributes(x, y, z, which, which.not, ...)

Default S3 method:
merge_attributes(x, y, z, which = NULL, which.not = NULL, ...)

S3 method for class 'generic_spct'
merge_attributes(
x,
y,
z,
which = NULL,
which.not = NULL,
copy.class = FALSE,
...

)

Arguments

x, y, z R objects. Objects x and y must be of the same class, z must be an object with
a structure valid for this same class.

which character Names of attributes to copy, if NULL all those relevant according to
the class of x are used as default,

which.not character Names of attributes not to be copied. The names passed here are re-
moved from the list for which, which is most useful when we want to modify
the default.

... not used
copy.class logical If TRUE class attributes are also copied.

Value

A copy of z with additional attributes set.

Methods (by class)

• merge_attributes(default): Default for generic function
• merge_attributes(generic_spct):

226 mod-.generic_spct

minus-.generic_spct Arithmetic Operators

Description

Subtraction operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 - e2 = NULL

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

mod-.generic_spct Arithmetic Operators

Description

Reminder operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %% e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

msmsply 227

msmsply Multi-spct transform methods

Description

Apply a function or operator to a collection of spectra.

Usage

msmsply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)

msdply(
mspct,
.fun,
...,
idx = NULL,
col.names = NULL,
.parallel = FALSE,
.paropts = NULL

)

mslply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)

msaply(mspct, .fun, ..., .drop = TRUE, .parallel = FALSE, .paropts = NULL)

Arguments

mspct an object of class generic_mspct or a derived class

.fun a function

... other arguments passed to .fun

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

idx character Name of the column with the names of the members of the collection
of spectra.

col.names character Names to be used for data columns.

.drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

228 na.omit

Value

a collection of spectra in the case of msmsply, belonging to a different class than mspct if .fun
modifies the class of the member spectra.

a data frame in the case of msdply

a list in the case of mslply

an vector in the case of msaply

mspct_classes Names of multi-spectra classes

Description

Function that returns a vector containing the names of multi-spectra classes using for collections of
spectra.

Usage

mspct_classes()

Value

A character vector of class names.

Examples

mspct_classes()

na.omit Handle Missing Values in Objects

Description

These methods are useful for dealing with NAs in e.g., source_spct, response_spct, filter_spct
and reflector_spct.

na.omit 229

Usage

S3 method for class 'generic_spct'
na.omit(object, na.action = "omit", fill = NULL, target.colnames, ...)

S3 method for class 'source_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'response_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'filter_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'reflector_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'object_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'solute_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'cps_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'raw_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'chroma_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'generic_mspct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'generic_spct'
na.exclude(object, na.action = "exclude", fill = NULL, target.colnames, ...)

S3 method for class 'source_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'response_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'filter_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'reflector_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

230 na.omit

S3 method for class 'object_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'solute_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'cps_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'raw_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'chroma_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'generic_mspct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

Arguments

object an R object

na.action character One of "omit", "exclude" or "replace".

fill numeric Value used to replace NAs unless NULL, in which case interpolation is
attempted.

target.colnames

character Vector of names for the target columns to operate upon, if present in
object.

... further arguments other special methods could require

Details

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of the
result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the result, which
is "exclude".

Note

na.fail and na.pass do not require a specialisation for spectral objects. R’s definitions work
as expected with no need to override them. We do not define a method na.replace, just pass
"replace" as argument. The current implementation replaces by interpolation only individual NAs
which are flanked on both sides by valid data. Runs of multiple NAs con only replaced by a constant
value passed through parameter fill.

See Also

na.fail and na.action

net_irradiance 231

Examples

my_sun.spct <- sun.spct
my_sun.spct[3, "s.e.irrad"] <- NA
my_sun.spct[5, "s.q.irrad"] <- NA

head(my_sun.spct)

rows omitted
zo <- na.omit(my_sun.spct)
head(zo)
na.action(zo)

rows excluded
ze <- na.exclude(my_sun.spct)
head(ze)
na.action(ze)

data in both rows replaced
zr <- na.omit(my_sun.spct, na.action = "replace")
head(zr)
na.action(zr)

net_irradiance Net radiation flux

Description

Estimate net radiation balance expressed as a flux in W/m2. If lw.down.irradiance is passed a
value in W / m2 the difference is computed directly and if not an approximate value is estimated,
using R_rel = 0.75 which corresponds to clear sky, i.e., uncorrected for cloudiness. This is the
approach to estimation is that recommended by FAO for hourly estimates while here we use it for
instantaneous or mean flux rates.

Usage

net_irradiance(
temperature,
sw.down.irradiance,
lw.down.irradiance = NULL,
sw.albedo = 0.23,
lw.emissivity = 0.98,
water.vp = 0,
R_rel = 1

)

232 normalization

Arguments

temperature numeric vector of air temperatures (C) at 2 m height.
sw.down.irradiance, lw.down.irradiance

numeric Down-welling short wave and long wave radiation radiation (W/m2).

sw.albedo numeric Albedo as a fraction of one (/1).

lw.emissivity numeric Emissivity of the surface (ground or vegetation) for long wave radia-
tion.

water.vp numeric vector of water vapour pressure in air (Pa), ignored if lw.down.irradiance
is available.

R_rel numeric The ratio of actual and clear sky short wave irradiance (/1).

Value

A numeric vector of evapotranspiration estimates expressed as W / m-2.

See Also

Other Evapotranspiration and energy balance related functions.: ET_ref()

normalization Normalization of an R object

Description

Normalization wavelength [nm] of an R object, retrieved from the object’s attributes.

Usage

normalization(x)

Default S3 method:
normalization(x)

S3 method for class 'waveband'
normalization(x)

Arguments

x an R object

Value

A single numeric value of wavelength [nm].

normalize 233

Methods (by class)

• normalization(default): Default methods.

• normalization(waveband): Normalization of a waveband object.

See Also

Other waveband attributes: is_effective(), labels()

normalize Normalize spectral data

Description

This method returns a spectral object of the same class as the one supplied as argument but with the
spectral data normalized to 1.0 at a specific wavelength. When the object contains multiple spectra,
the normalisation is applied to each spectrum individually.

Usage

normalize(x, ...)

normalise(x, ...)

Default S3 method:
normalize(x, ...)

S3 method for class 'source_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'response_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
keep.scaling = FALSE,
na.rm = FALSE

234 normalize

)

S3 method for class 'filter_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'reflector_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = NULL,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'solute_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'raw_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'cps_spct'
normalize(
x,
...,

normalize 235

range = NULL,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'generic_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
col.names,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'source_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
normalize(
x,
...,
range = NULL,

236 normalize

norm = "max",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
normalize(
x,
...,
range = x,
norm = "max",
qty.out = NULL,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
normalize(
x,
...,
range = x,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
normalize(
x,
...,
range = x,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
normalize(
x,

normalize 237

...,
range = x,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
col.names,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... not used in current version

range An R object on which range() returns a numeric vector of length 2 with the
limits of a range of wavelengths in nm, with min and max wavelengths (nm)
used to set boundaries for search for normalization.

norm numeric Normalization wavelength (nm) or character string "max", or "min" for
normalization at the corresponding wavelength, "update" to update the normal-
ization after modifying units of expression, quantity or range but respecting the
previously used criterion, or "skip" to force return of x unchanged.

unit.out character Allowed values "energy", and "photon", or its alias "quantum"

keep.scaling logical or numeric Flag to indicate if any existing scaling should be preserved
or not. The default, FALSE, preserves the behaviour of versions (<= 0.10.9). If
numeric, the spectrum is scaled to this value before normalization and marked
as not scaled.

na.rm logical indicating whether NA values should be stripped before calculating the
summary (e.g. "max") used for normalization.

qty.out character string Allowed values are "transmittance", and "absorbance" indicat-
ing on which quantity to apply the normalization.

col.names character vector containing the names of columns or variables to which to apply
the normalization.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

238 normalize

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

By default normalization is done based on the maximum of the spectral data. It is possible to also do
the normalization based on a user-supplied wavelength expressed in nanometres or the minimum.
An existing normalization can be updated for a different unit of expression or after a conversion to
a related spectral quantity.

By default the function is applied to the whole spectrum, but by passing a range of wavelengths as
input, the search, e.g., for the maximum, can be limited to a range of wavelengths of interest instead
of the whole spectrum.

In ’photobiology’ (>= 0.10.8) detailed information about the normalization is stored in an attribute.
In ’photobiology’ (>= 0.10.10) applying a new normalization to an already normalized spectrum
recomputes the multiplier factors stored in the attributes whenever possible. This ensures that the
returned object is identical, except for possible accumulated loss of precision due to floating-point
arithmetic, independently of the previous application of a different normalization.

Value

A copy of the object passed as argument to x with the values of the spectral quantity rescaled to
1 at the normalization wavelength. If the normalization wavelength is not already present in x,
it is added by interpolation—i.e. the returned value may be one row longer than x. Attributes
normalized and normalization are set to keep a log of the computations applied.

Methods (by class)

• normalize(default): Default for generic function
• normalize(source_spct): Normalize a source_spct object.
• normalize(response_spct): Normalize a response spectrum.
• normalize(filter_spct): Normalize a filter spectrum.
• normalize(reflector_spct): Normalize a reflector spectrum.
• normalize(solute_spct): Normalize a solute spectrum.
• normalize(raw_spct): Normalize a raw spectrum.
• normalize(cps_spct): Normalize a cps spectrum.
• normalize(generic_spct): Normalize a raw spectrum.
• normalize(source_mspct): Normalize the members of a source_mspct object.
• normalize(response_mspct): Normalize the members of a response_mspct object.
• normalize(filter_mspct): Normalize the members of a filter_mspct object.
• normalize(reflector_mspct): Normalize the members of a reflector_mspct object.
• normalize(raw_mspct): Normalize the members of a raw_mspct object.
• normalize(cps_mspct): Normalize the members of a cps_mspct object.
• normalize(solute_mspct): Normalize the members of a solute_mspct object.
• normalize(generic_mspct): Normalize the members of a solute_mspct object.

normalized_diff_ind 239

Note

When the spectrum passed as argument to x had been previously scaled, in ’photobiology’ (<=
0.10.9) the scaling attribute was always removed and no normalization factors returned. In ’photo-
biology’ (>= 0.10.10) scaling information can be preserved by passing keep.scaling = TRUE.

By default if x contains one or more NA values and the normalization is based on a summary quantity,
the returned spectrum will contain only NA values. If na.rm == TRUE then the summary quantity will
be calculated after striping NA values, and only the values that were NA in x will be NA values in the
returned spectrum.

When a numeric value is passed as argument to keep.scaling, the scaling uses f = "total" or f =
"mean" depending on the class of x. Prescaling is only occasionally needed.

Method normalize is implemented for solute_spct objects but as the spectral data stored in them
are a description of an intensive property of a substance, normalization is unlikely to useful. To rep-
resent solutions of specific concentrations of solutes, filter_spct objects should be used instead.

normalise() is a synonym for this normalize() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), setNormalized(), setScaled()

Examples

normalize(sun.spct)
normalise(sun.spct) # equivalent

normalize(sun.spct, norm = "max")
normalize(sun.spct, norm = 400)

normalized_diff_ind Calculate a normalized difference.

Description

This method returns a normalized difference index value for an arbitrary pair of wavebands. There
are many such indexes in use, such as NDVI (normalized difference vegetation index), NDWI
(normalized difference water index), NDMI (normalized difference moisture index), etc., the only
difference among then is in the wavebands used.

Usage

normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

normalised_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

NDxI(spct, w.band.plus, w.band.minus, f, ...)

240 normalized_diff_ind

Default S3 method:
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

S3 method for class 'generic_spct'
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

S3 method for class 'generic_mspct'
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

Arguments

spct an R object
w.band.plus, w.band.minus

waveband objects The wavebands determine the regions of the spectrum used in
the calculations.

f function used for integration taking spct as first argument and a list of wavebands
as second argument.

... additional arguments passed to f

Details

f is most frequently reflectance, but also transmittance, or even absorbance, response,
irradiance or a user-defined function can be used if there is a good reason for it. In every case
spct should be of the class expected by f. When using two wavebands of different widths do
consider passing to f a suitable quantity argument, for example to compare averages rather than
integrals. Wavebands can describe weighting functions if desired.

NDxI =
f(s, wbplus)− f(s, wbminus)

f(s, wbplus) + f(s, wbminus)

Value

A named numeric value for the index, or a tibble depending on whether a spectrum or a collection
of spectra is passed as first argument. If the wavelength range of spct does not fully overlap with
both wavebands NA is silently returned.

Methods (by class)

• normalized_diff_ind(default): default

• normalized_diff_ind(generic_spct):

• normalized_diff_ind(generic_mspct):

Note

Some NDxI indexes are directly based on satellite instrument data, such as those in the Landsat
satellites. To simulate such indexes using spectral reflectande as input, constructors of waveband
definitions from package ’photobiologyWavebands’ can be useful.

normalize_range_arg 241

normalised_diff_ind() is a synonym for normalized_diff_ind().

NDxI() is a shorthand for normalized_diff_ind().

See Also

Rfr_normdiff

normalize_range_arg Normalize a range argument into a true numeric range

Description

Several functions in this package and the suite accept a range argument with a flexible syntax. To
ensure that all functions and methods behave in the same way this code has been factored out into a
separate function.

Usage

normalize_range_arg(arg.range, wl.range, trim = TRUE)

Arguments

arg.range a numeric vector of length two, or any other object for which function range()
will return a range of wavelengths (nm).

wl.range a numeric vector of length two, or any other object for which function range()
will return a range of wavelengths (nm), missing values are not allowed.

trim logical If TRUE the range returned is bound within wl.range while if FALSE
it can be broader.

Details

The arg.range argument can contain NAs which are replaced by the value at the same position in
wl.range. In addition a NULL argument for range is converted into wl.range. The wl.range
is also the limit to which the returned value is trimmed if trim == TRUE. The idea is that the value
supplied as wl.range is the wavelength range of the data.

Value

a numeric vector of length two, guaranteed not to have missing values.

Examples

normalize_range_arg(c(NA, 500), range(sun.spct))
normalize_range_arg(c(300, NA), range(sun.spct))
normalize_range_arg(c(100, 5000), range(sun.spct), FALSE)
normalize_range_arg(c(NA, NA), range(sun.spct))
normalize_range_arg(c(NA, NA), sun.spct)

242 oper_spectra

oper_spectra Binary operation on two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added.

Usage

oper_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE,
bin.oper = NULL,
...

)

Arguments

w.length1 numeric vector of wavelength (nm)

w.length2 numeric vector of wavelength (nm)

s.irrad1 a numeric vector of spectral values

s.irrad2 a numeric vector of spectral values

trim a character string with value "union" or "intersection"

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros

bin.oper a function defining a binary operator (for the usual math operators enclose argu-
ment in backticks)

... additional arguments (by name) passed to bin.oper

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

peaks 243

Value

a dataframe with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
result.data <-

with(sun.data,
oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=`+`))

head(result.data)
tail(result.data)
my_fun <- function(e1, e2, k) {return((e1 + e2) / k)}
result.data <-

with(sun.data,
oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=my_fun, k=2))

head(result.data)
tail(result.data)

peaks Peaks or local maxima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

Usage

peaks(x, span, ignore_threshold, strict, na.rm, ...)

Default S3 method:
peaks(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)

S3 method for class 'numeric'
peaks(x, span = 5, ignore_threshold = NA, strict = TRUE, na.rm = FALSE, ...)

244 peaks

S3 method for class 'data.frame'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
var.name = y.var.name,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'source_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'response_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,

peaks 245

na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'filter_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'reflector_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'solute_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'cps_spct'
peaks(
x,
span = 5,

246 peaks

ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'raw_spct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,

peaks 247

.parallel = FALSE,

.paropts = NULL
)

S3 method for class 'response_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

248 peaks

S3 method for class 'solute_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
peaks(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

span integer A peak is defined as an element in a sequence which is greater than all

peaks 249

other elements within a window of width span centered at that element. Use
NULL for the global peak.

ignore_threshold

numeric Value between 0.0 and 1.0 indicating the relative size compared to
tallest peak threshold below which peaks will be ignored. Negative values set a
threshold so that the tallest peaks are ignored, instead of the shortest.

strict logical If TRUE, an element must be strictly greater than all other values in its
window to be considered a peak.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

... ignored
var.name, x.var.name, y.var.name

character Name of column where to look for peaks.

refine.wl logical Flag indicating if peak location should be refined by fitting a function.

method character String with the name of a method. Currently only spline interpolation
is implemented.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A subset of x with rows corresponding to local maxima.

Methods (by class)

• peaks(default): Default returning always NA.

• peaks(numeric): Default function usable on numeric vectors.

• peaks(data.frame): Method for "data.frame" objects.

• peaks(generic_spct): Method for "generic_spct" objects.

• peaks(source_spct): Method for "source_spct" objects.

• peaks(response_spct): Method for "response_spct" objects.

• peaks(filter_spct): Method for "filter_spct" objects.

• peaks(reflector_spct): Method for "reflector_spct" objects.

• peaks(solute_spct): Method for "solute_spct" objects.

• peaks(cps_spct): Method for "cps_spct" objects.

• peaks(raw_spct): Method for "raw_spct" objects.

• peaks(generic_mspct): Method for "generic_mspct" objects.

250 phenylalanine.spct

• peaks(source_mspct): Method for "source_mspct" objects.

• peaks(response_mspct): Method for "cps_mspct" objects.

• peaks(filter_mspct): Method for "filter_mspct" objects.

• peaks(reflector_mspct): Method for "reflector_mspct" objects.

• peaks(solute_mspct): Method for "solute_mspct" objects.

• peaks(cps_mspct): Method for "cps_mspct" objects.

• peaks(raw_mspct): Method for "raw_mspct" objects.

Note

Thresholds for ignoring peaks are applied after peaks are searched for, and negative threshold values
can in some cases result in no peaks being returned.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

peaks(sun.spct, span = 51)
peaks(sun.spct, span = NULL)
peaks(sun.spct, span = 51, refine.wl = TRUE)

peaks(sun.spct)

phenylalanine.spct Molar spectral attenuation coefficient of phenylalanine

Description

A dataset containing the wavelengths at a 0.25 nm interval and the corresponding attenuation coef-
ficients.

Usage

phenylalanine.spct

Format

A solute_spct object with 1993 rows and 2 variables

Details

• w.length (nm), range 222 to 720 nm.

• K.mole (cm-1/M)

photodiode.spct 251

Author(s)

Du et ql. (original data); Scott Prahl (included data).

References

https://omlc.org/spectra/PhotochemCAD/html/073.html

H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and
research tool in photochemistry," Photochem. Photobiol., 68, 141-142, 1998.

J. M. Dixon, M. Taniguchi and J. S. Lindsey "PhotochemCAD 2. A refined program with accom-
panying spectral databases for photochemical calculations", Photochem. Photobiol., 81, 212-213,
2005.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, photodiode.spct, sun.spct,
sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

head(phenylalanine.spct)
summary(phenylalanine.spct)
solute_properties(phenylalanine.spct)
cat(comment(phenylalanine.spct))

photodiode.spct Spectral response of a GaAsP photodiode

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as A/(W/nm) for GaAsP
photodiode type G6262 from Hamamatsu. Data digitized from manufacturer’s data sheet. The value
at the peak is 0.19 A/W .

Usage

photodiode.spct

Format

A response_spct object with 94 rows and 2 variables

Details

• w.length (nm).

• s.e.response (A/W)

https://omlc.org/spectra/PhotochemCAD/html/073.html

252 photons_energy_ratio

References

Hamamatsu (2011) Datasheet: GaAsP Photodiodes G5645 G5842 G6262. Hamamatsu Photonics
KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/G6262.html. Visited 2017-12-15.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, sun.spct,
sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

photodiode.spct

photons_energy_ratio Photon:energy ratio

Description

This function gives the photons:energy ratio between for one given waveband of a radiation spec-
trum.

Usage

photons_energy_ratio(
w.length,
s.irrad,
w.band = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength (nm).
s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]

as indicated by the argument pased to unit.in.
w.band waveband object.
unit.in character Allowed values "energy", and "photon", or its alias "quantum".
check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

photon_irradiance 253

Value

A single numeric value giving the ratio moles-photons per Joule.

Note

The default for the w.band parameter is a waveband covering the whole range of w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

photons:energy ratio
with(sun.data, photons_energy_ratio(w.length, s.e.irrad, new_waveband(400,500)))
photons:energy ratio for whole spectrum
with(sun.data, photons_energy_ratio(w.length, s.e.irrad))

photon_irradiance Photon irradiance

Description

This function returns the photon irradiance for a given waveband of a radiation spectrum, optionally
applies a BSWF.

Usage

photon_irradiance(
w.length,
s.irrad,
w.band = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

254 photon_ratio

Arguments

w.length numeric vector of wavelength [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band waveband.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value with no change in scale factor: [mol s−1 sm−2].

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, photon_irradiance(w.length, s.e.irrad))
with(sun.data, photon_irradiance(w.length, s.e.irrad, new_waveband(400,700)))

photon_ratio Photo:photon ratio

Description

This function gives the photon ratio between two given wavebands of a radiation spectrum.

photon_ratio 255

Usage

photon_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength (nm).

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band.num waveband object used to compute the numerator of the ratio.

w.band.denom waveband object used to compute the denominator of the ratio.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a single numeric value giving the unitless ratio.

Note

The default for both w.band parameters is a waveband covering the whole range of w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

256 print.generic_spct

Examples

with(sun.data,
photon_ratio(w.length, s.e.irrad, new_waveband(400,500), new_waveband(400,700)))

plus-.generic_spct Arithmetic Operators

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 + e2 = NULL

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

print.generic_spct Print spectral objects

Description

Print methods for objects of spectral classes, including collections of spectra.

Usage

S3 method for class 'generic_spct'
print(x, ..., n = NULL, width = NULL)

S3 method for class 'generic_mspct'
print(x, ..., n = NULL, width = NULL, n.members = 10)

print.generic_spct 257

Arguments

x An object of one of the summary classes for spectra.

... not used in current version.

n Number of rows to show. If NULL, the default, will print all rows if less than
option dplyr.print_max. Otherwise, will print dplyr.print_min rows.

width Width of text output to generate. This defaults to NULL, which means use
getOption("width") and only display the columns that fit on one screen. You can
also set option(dplyr.width = Inf) to override this default and always print all
columns.

n.members numeric Number of members of the collection to print.

Details

This is simply a wrapper on the print method for tibbles, with additional information in the header.
Currently, width applies only to the table of data.

Objects are printed as is, ignoring the current settings of R options photobiology.radiation.unit
and photobiology.filter.qty.

Value

Returns x invisibly.

Functions

• print(generic_mspct):

Examples

print(sun.spct)
print(sun.spct, n = 5)

print(q2e(sun.spct, action = "replace"))
print(e2q(sun.spct, action = "replace"))

print(polyester.spct)
print(any2A(polyester.spct))
print(any2Afr(polyester.spct))

print(two_filters.spct)

258 print.metadata

print.metadata Print methods for metadata records

Description

Print methods for objects of classes used to store different meta data properties in the classes for
different types of spectra.

Usage

S3 method for class 'instr_desc'
print(x, ...)

S3 method for class 'instr_settings'
print(x, ...)

S3 method for class 'filter_properties'
print(x, ...)

S3 method for class 'solute_properties'
print(x, ...)

Arguments

x An object of one of the summary classes for spectra.

... not used in current version.

Details

These methods print an abbreviated representaion of objects used to store metadata in attributes.
They are similar to records and formatted printing is useful both on its own and in the print methods
for spectra and their summaries.

Examples

print(getInstrDesc(sun_evening.spct))
str(getInstrDesc(sun_evening.spct))

print(getInstrSettings(sun_evening.spct))
str(getInstrSettings(sun_evening.spct))

print(filter_properties(polyester.spct))
str(filter_properties(polyester.spct))

print(solute_properties(phenylalanine.spct))
str(solute_properties(phenylalanine.spct))

print.solar_time 259

print.solar_time Print solar time and solar date objects

Description

Print solar time and solar date objects

Usage

S3 method for class 'solar_time'
print(x, ...)

S3 method for class 'solar_date'
print(x, ...)

Arguments

x an R object

... passed to format method

Note

Default is to print the underlying POSIXct as a solar time.

See Also

Other Local solar time functions: as.solar_date(), is.solar_time(), solar_time()

print.summary_generic_spct

Print spectral summary

Description

A function to nicely print objects of classes "summary...spct".

Usage

S3 method for class 'summary_generic_spct'
print(x, ...)

S3 method for class 'summary_generic_mspct'
print(x, width = NULL, ..., n = NULL)

260 print.tod_time

Arguments

x An object of one of the summary classes for spectra

... named arguments passed to the print() method for class "tbl_df".

width integer Width of text output to generate. This defaults to NULL, which means
use the width option.

n integer Number of member spectra for which information is printed.

Functions

• print(summary_generic_mspct):

See Also

formatting

Examples

print(summary(sun.spct))

print(summary(sun_evening.mspct))

print.tod_time Print time-of-day objects

Description

Print time-of-day objects

Usage

S3 method for class 'tod_time'
print(x, ...)

Arguments

x an R object

... passed to format method

Note

Default is to print the underlying numeric vector as a solar time.

See Also

Other Time of day functions: as_tod(), format.tod_time()

print.waveband 261

print.waveband Print a "waveband" object

Description

A function to more nicely print objects of class "waveband".

Usage

S3 method for class 'waveband'
print(x, ...)

Arguments

x an object of class "waveband"

... not used in current version

prod_spectra Multiply two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added.

Usage

prod_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

262 pull_sample

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a dataframe with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
square.sun.data <-

with(sun.data, prod_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(square.sun.data)
tail(square.sun.data)

pull_sample Random sample of spectra

Description

A method to extract a random sample of members from a list, a collection of spectra or a spectrum
object containing multiple spectra in long form.

pull_sample 263

Usage

pull_sample(x, size, ...)

Default S3 method:
pull_sample(x, size, ...)

S3 method for class 'list'
pull_sample(
x,
size = 1,
replace = FALSE,
keep.order = TRUE,
simplify = FALSE,
...

)

S3 method for class 'generic_spct'
pull_sample(x, size = 1, replace = FALSE, keep.order = TRUE, ...)

S3 method for class 'generic_mspct'
pull_sample(
x,
size = 1,
replace = FALSE,
recursive = FALSE,
keep.order = TRUE,
simplify = FALSE,
...

)

Arguments

x An R object possibly containing multiple spectra or other components.

size integer The number of spectra to extract, if available.

... currently ignored.

replace logical Sample with or without replacement.

keep.order logical Return the spectra ordered as in x or in random order.

simplify logical If size = 1, and x is a collection return the spectrum object instead of a
collection with it as only member.

recursive logical If x is a collection, expand or not member spectra containing multiple
spectra in long form into individual members before sampling.

Value

If x is an spectrum object, such as a "filter_spct" object, the returned object is of the same class
but in most cases containing fewer spectra in long form than x. If x is a collection of spectrum

264 q2e

objecta, such as a "filter_mspct" object, the returned object is of the same class but in most cases
containing fewer member spectra than x.

Methods (by class)

• pull_sample(default): Default for generic function

• pull_sample(list): Specialization for generic_spct

• pull_sample(generic_spct): Specialization for generic_spct

• pull_sample(generic_mspct): Specialization for generic_mspct

See Also

See sample for the method used for the sampling.

Examples

a.list <- as.list(letters)
names(a.list) <- LETTERS
set.seed(12345678)
pull_sample(a.list, size = 8)
pull_sample(a.list, size = 8, keep.order = FALSE)
pull_sample(a.list, size = 8, replace = TRUE)
pull_sample(a.list, size = 8, replace = TRUE, keep.order = FALSE)
pull_sample(a.list, size = 1)
pull_sample(a.list, size = 1, simplify = TRUE)

q2e Convert photon-based quantities into energy-based quantities

Description

Conversion methods for spectral photon irradiance into spectral energy irradiance and for spectral
photon response into spectral energy response.

Usage

q2e(x, action, byref, ...)

Default S3 method:
q2e(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_spct'
q2e(x, action = "add", byref = FALSE, ...)

S3 method for class 'response_spct'
q2e(x, action = "add", byref = FALSE, ...)

q2e 265

S3 method for class 'source_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

S3 method for class 'response_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

Arguments

x an R object.

action a character string, one of "add", "replace", "add.raw" or "replace.raw".

byref logical indicating if a new object will be created by reference or a new object
returned.

... not used in current version.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The converted spectral values are added to or replace the existing spectral values depending on
the argument passed to parameter action. Addition is currently not supported for normalized
spectra. If the spectrum has been normalized with a recent version of package ’photobiology’ the
spectrum will be renormalized after conversion using the same arguments as previously. "add.raw"
and "replace.raw" prevent the re-normalization, are included for completeness and as a way of
restoring previous behaviour.

Methods (by class)

• q2e(default): Default method

• q2e(source_spct): Method for spectral irradiance

• q2e(response_spct): Method for spectral responsiveness

• q2e(source_mspct): Method for collections of (light) source spectra

• q2e(response_mspct): Method for collections of response spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2qmol_multipliers(), e2quantum_multipliers()

266 qe_ratio

qe_ratio Photon:energy ratio

Description

This function returns the photon to energy ratio for each waveband of a light source spectrum.

Usage

qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

Default S3 method:
qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

S3 method for class 'source_spct'
qe_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[q:e]", ""),
...

)

S3 method for class 'source_mspct'
qe_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[q:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct.

qe_ratio 267

w.band waveband or list of waveband objects.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The ratio is based on one photon irrandiance and one energy irradiance, both computed for the same
waveband.

Q(s, wb)

I(s, wb)

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

Value

Computed values are ratios between photon irradiance and energy irradiance for a given waveband.
A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

268 q_fluence

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used, with "[q:e]" prepended. Units [mol J-1].

Methods (by class)

• qe_ratio(default): Default for generic function

• qe_ratio(source_spct): Method for source_spct objects

• qe_ratio(source_mspct): Calculates photon:energy ratio from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_fraction(),
q_ratio()

Examples

qe_ratio(sun.spct,
waveband(c(400,700), wb.name = "White")) # mol J-1

qe_ratio(sun.spct,
waveband(c(400,700), wb.name = "White"),
scale.factor = 1e6) # umol J-1

q_fluence Photon fluence

Description

Photon irradiance (i.e. quantum irradiance) for one or more waveband of a light source spectrum.

Usage

q_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,

q_fluence 269

use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
q_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
q_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
q_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,

270 q_fluence

.paropts = NULL
)

Arguments

spct an R object.
w.band a list of waveband objects or a waveband object
exposure.time lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded.
use.cached.mult

logical indicating whether multiplier values should be cached between calls.
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The exposure.time is copied from the spectrum object to the output as an attribute. Units
are as follows: moles of photons per exposure.

Methods (by class)

• q_fluence(default): Default for generic function
• q_fluence(source_spct): Calculate photon fluence from a source_spct object and the

duration of the exposure
• q_fluence(source_mspct): Calculates photon (quantum) fluence from a source_mspct ob-

ject.

q_fraction 271

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_irrad()

Examples

library(lubridate)
q_fluence(sun.spct,

w.band = waveband(c(400,700)),
exposure.time = lubridate::duration(3, "minutes"))

q_fraction Photon:photon fraction

Description

This function returns the photon fraction for a given pair of wavebands of a light source spectrum.

Usage

q_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
q_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,

272 q_fraction

use.hinges,
...

)

S3 method for class 'source_spct'
q_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'source_mspct'
q_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[q:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "source_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

q_fraction 273

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the fraction is based on two photon irradiances, one com-
puted for each waveband.

Q(s, wbnum)

Q(s, wbdenom) +Q(s, wbnum)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Qλ(s, wbnum)

Qλ(s, wbdenom) +Qλ(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[q:q]" is appended if quantity = "total" and "[q(wl):q(wl)]"
if quantity = "mean" or quantity = "average".

274 q_irrad

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• q_fraction(default): Default for generic function

• q_fraction(source_spct): Method for source_spct objects

• q_fraction(source_mspct): Calculates photon:photon from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_ratio(),
qe_ratio()

Examples

q_fraction(sun.spct, new_waveband(400,500), new_waveband(400,700))

q_irrad Photon irradiance

Description

Photon irradiance (i.e. quantum irradiance) for one or more wavebands of a light source spectrum.

Usage

q_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,

q_irrad 275

wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
q_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
q_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
q_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),

276 q_irrad

naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band a list of waveband objects or a waveband object.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

q_irrad 277

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If
time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2]

Methods (by class)

• q_irrad(default): Default for generic function

• q_irrad(source_spct): Calculates photon irradiance from a source_spct object.

• q_irrad(source_mspct): Calculates photon (quantum) irradiance from a source_mspct ob-
ject.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_fluence()

Examples

q_irrad(sun.spct, waveband(c(400,700)))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution.pc")

278 q_ratio

q_ratio Photon:photon ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

Usage

q_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
q_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'source_spct'
q_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

q_ratio 279

S3 method for class 'source_mspct'
q_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[q:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "source_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

280 q_ratio

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the ratio is based on two photon irradiances, one computed
for each waveband.

Q(s, wbnum)

Q(s, wbdenom)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Qλ(s, wbnum)

Qλ(s, wbdenom)

Ratios based on totals and means are numerically identical only if the wavelength expanse of the
two wavebands is the same.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[q:q]" is appended if quantity = "total" and "[q(wl):q(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Methods (by class)

• q_ratio(default): Default for generic function

• q_ratio(source_spct): Method for source_spct objects

• q_ratio(source_mspct): Calculates photon:photon from a source_mspct object.

q_response 281

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_fraction(),
qe_ratio()

Examples

q_ratio(sun.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(400,700), wb.name = "White"))

q_response Photon-based photo-response

Description

This function returns the mean response for a given waveband and a response spectrum.

Usage

q_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

Default S3 method:
q_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,

282 q_response

use.hinges,
...

)

S3 method for class 'response_spct'
q_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'
q_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

q_response 283

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• q_response(default): Default method for generic function
• q_response(response_spct): Method for response spectra.
• q_response(response_mspct): Calculates photon (quantum) response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: e_response(), response()

Examples

q_response(ccd.spct, new_waveband(200,300))
q_response(photodiode.spct)

284 rbindspct

r4p_pkgs Packages in R for Photobiology suite

Description

A dataset containing the names of all the packages in this suite.

Usage

r4p_pkgs

Format

A character vector.

Details

A character vector.

Examples

r4p_pkgs

rbindspct Row-bind spectra

Description

A wrapper on dplyr::rbind_fill that preserves class and other attributes of spectral objects.

Usage

rbindspct(
l,
use.names = TRUE,
fill = TRUE,
idfactor = TRUE,
attrs.source = NULL,
attrs.simplify = FALSE

)

rbindspct 285

Arguments

l A source_mspct, filter_mspct, reflector_mspct, response_mspct, chroma_mspct,
cps_mspct, generic_mspct object or a list containing source_spct, filter_spct,
reflector_spct, response_spct, chroma_spct, cps_spct, or generic_spct
objects.

use.names logical If TRUE items will be bound by matching column names. By default
TRUE for rbindspct. Columns with duplicate names are bound in the order of
occurrence, similar to base. When TRUE, at least one item of the input list has
to have non-null column names.

fill logical If TRUE fills missing columns with NAs. By default TRUE. When TRUE,
use.names has also to be TRUE, and all items of the input list have to have non-
null column names.

idfactor logical or character Generates an index column of factor type. Default is
(idfactor=TRUE) for both lists and _mspct objects. If idfactor=TRUE then
the column is auto named spct.idx. Alternatively the column name can be
directly provided to idfactor as a character string.

attrs.source integer Index into the members of the list from which attributes should be copied.
If NULL, all attributes are collected into named lists, except that unique comments
are pasted.

attrs.simplify logical Flag indicating that when all values of an attribute are equal for all mem-
bers, the named list will be replaced by a single copy of the value.

Details

Each item of l should be a spectrum, including NULL (skipped) or an empty object (0 rows).
rbindspc is most useful when there are a variable number of (potentially many) objects to stack.
rbindspct always returns at least a generic_spct as long as all elements in l are spectra.

Value

An spectral object of a type common to all bound items containing a concatenation of all the items
passed in. If the argument ’idfactor’ is TRUE, then a factor ’spct.idx’ will be added to the returned
spectral object.

Note

Note that any additional ’user added’ attributes that might exist on individual items of the input list
will not be preserved in the result. The attributes used by the photobiology package are preserved,
and if they are not consistent across the bound spectral objects, a warning is issued.

dplyr::rbind_fill is called internally and the result returned is the highest class in the inher-
itance hierarchy which is common to all elements in the list. If not all members of the list be-
long to one of the _spct classes, an error is triggered. The function sets all data in source_spct
and response_spct objects supplied as arguments into energy-based quantities, and all data in
filter_spct objects into transmittance before the row binding is done. If any member spectrum is
tagged, it is untagged before row binding.

286 reflectance

Examples

default, adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct))
spct
class(spct)

adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct), idfactor = TRUE)
head(spct)
class(spct)

adds factor 'spct.idx' with the names given to the spectra in the list
supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct), idfactor = TRUE)
head(spct)
class(spct)

adds factor 'ID' with the names given to the spectra in the list
supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct),

idfactor = "ID")
head(spct)
class(spct)

reflectance Reflectance

Description

Function to calculate the mean, total, or other summary of reflectance for spectral data stored in a
reflector_spct or in an object_spct.

Usage

reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'reflector_spct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",

reflectance 287

...
)

S3 method for class 'object_spct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'reflector_mspct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object

w.band waveband or list of waveband objects or a numeric vector of length two. The

288 reflectance

waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments
naming character one of "long", "default", "short" or "none". Used to select the

type of names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• reflectance(default): Default for generic function
• reflectance(reflector_spct): Specialization for reflector_spct
• reflectance(object_spct): Specialization for object_spct
• reflectance(reflector_mspct): Calculates reflectance from a reflector_mspct

• reflectance(object_mspct): Calculates reflectance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

relative_AM 289

Examples

reflectance(black_body.spct, waveband(c(400,700)))
reflectance(white_body.spct, waveband(c(400,700)))

relative_AM Relative Air Mass (AM)

Description

Approximate relative air mass (AM) from sun elevation or sun zenith angle.

Usage

relative_AM(elevation.angle = NULL, zenith.angle = NULL, occluded.value = NA)

Arguments

elevation.angle, zenith.angle
numeric vector Angle in degrees for the sun position. An argument should be
passed to one and only one of elevation_angle or zenith_angle.

occluded.value numeric Value to return when elevation angle is negative (sun below the hori-
zon).

Details

This is an implementation of equation (3) in Kasten and Young (1989). This equation is only an
approximation to the tabulated values in the same paper. Returned values are rounded to three
significant digits.

Note

Although relative air mass is not defined when the sun is not visible, returning a value different
from the default NA might be useful in some cases.

References

F. Kasten, A. T. Young (1989) Revised optical air mass tables and approximation formula. Applied
Optics, 28, 4735-. doi:10.1364/ao.28.004735.

Examples

relative_AM(c(90, 60, 30, 1, -10))
relative_AM(c(90, 60, 30, 1, -10), occluded.value = Inf)
relative_AM(zenith.angle = 0)

290 replace_bad_pixs

replace_bad_pixs Replace bad pixels in a spectrum

Description

This function replaces data for bad pixels by a local estimate, by either simple interpolation or using
the algorithm of Whitaker and Hayes (2018).

Usage

replace_bad_pixs(
x,
bad.pix.idx = FALSE,
window.width = 11,
method = "run.mean",
na.rm = TRUE

)

Arguments

x numeric vector containing spectral data.

bad.pix.idx logical vector or integer. Index into bad pixels in x.

window.width integer. The full width of the window used for the running mean.

method character The name of the method: "run.mean" is running mean as described
in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso-
lated bad pixels only).

na.rm logical Treat NA values as additional bad pixels and replace them.

Details

Simple interpolation replaces values of isolated bad pixels by the mean of their two closest neigh-
bors. The running mean approach allows the replacement of short runs of bad pixels by the running
mean of neighboring pixels within a window of user-specified width. The first approach works well
for spectra from array spectrometers to correct for hot and dead pixels in an instrument. The second
approach is most suitable for Raman spectra in which spikes triggered by radiation are wider than a
single pixel but usually not more than five pixels wide.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the
data.

Note

In the current implementation NA values are not removed, and if they are in the neighborhood of bad
pixels, they will result in the generation of additional NAs during their replacement.

response 291

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics
and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), spikes(),
valleys(), wls_at_target()

Examples

in a vector
replace_bad_pixs(c(1, 1, 45, 1, 1), bad.pix.idx = 3)

before replacement
white_led.raw_spct$counts_3[120:125]

replacing bad pixels at index positions 123 and 1994
with(white_led.raw_spct,

replace_bad_pixs(counts_3, bad.pix.idx = c(123, 1994)))[120:125]

response Integrated response

Description

Calculate average photon- or energy-based photo-response.

Usage

response(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

Default S3 method:
response(
spct,
w.band,
unit.out,

292 response

quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

S3 method for class 'response_spct'
response(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'
response(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object of class "generic_spct".

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

response 293

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

Whether returned values are expressed in energy-based or photon-based units depends on unit.out.
By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• response(default): Default for generic function

• response(response_spct): Method for response spectra.

• response(response_mspct): Calculates response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

294 Rfr_fraction

See Also

Other response functions: e_response(), q_response()

Rfr_fraction reflectance:reflectance fraction

Description

This function returns the reflectance fraction for a given pair of wavebands of a reflector spectrum.

Usage

Rfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Rfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",

Rfr_fraction 295

name.tag = NULL,
...

)

S3 method for class 'reflector_mspct'
Rfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "reflector_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

296 Rfr_fraction

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral reflectance, one computed for each waveband.

Rfrλ(s, wbnum)

Rfrλ(s, wbdenom) + Rfrλ(s, wbnum)

If the argument is set to quantity = "total" the fraction is based on two integrated reflectance,
one computed for each waveband.

Rfr(s, wbnum)

Rfr(s, wbdenom) + Rfr(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_fraction(default): Default for generic function

• Rfr_fraction(reflector_spct): Method for reflector_spct objects

• Rfr_fraction(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Rfr_from_n 297

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other Reflectance ratio functions: Rfr_normdiff(), Rfr_ratio()

Examples

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Rfr_from_n Reflectance at a planar boundary

Description

The reflectance at the planar boundary between two media, or interface, can be computed from
the relative refractive index. Reflectance depends on polarization, and the process of reflection can
generate polarized light through selective reflection of s and p components. A perfectly flat (i.e.,
polished) interface creates specular reflection, and this is the case that these functions describe.
These function describe a single interface, and for example in a glass pane, a light beam will cross
two air-glass interfaces.

Usage

Rfr_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5, p_fraction = 0.5)

Rfr_p_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)

Rfr_s_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)

298 Rfr_normdiff

Arguments

angle_deg, angle
numeric vector Angle of incidence of the light beam, in degrees or radians. If
both are supplied, radians take precedence.

n numeric vector, or generic_spct object Relative refractive index. The default 1.5
is suitable for crown glass or acrylic interacting with visible light. n depends on
wavelength, more or less strongly depending on the material.

p_fraction numeric in range 0 to 1. Polarization, defaults to 0.5 assuming light that is not
polarized.

Details

These functions implement Fresnel’s formulae. All parameters accept vectors as arguments. If
both n and angle are vectors with length different from one, they should both have the same length.
Reflectance depends on polarization, the s and p components need to be computed separately and
added up. Rfr_from_n() is for non-polarized light, i.e., with equal contribution of the two compo-
nents.

Value

If n is a numeric vector the returned value is a vector of reflectances, while if n is a generic_spct
object the returned value is a reflector_spct object.

Examples

Rfr_from_n(0:90)
Rfr_from_n(0:90, p_fraction = 1)
Rfr_from_n(0:90, n = 1.333) # water

Rfr_normdiff reflectance:reflectance normalised difference

Description

This function returns the reflectance normalized difference index for a given pair of wavebands of
a reflector spectrum.

Usage

Rfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,

Rfr_normdiff 299

use.hinges,
...

)

Default S3 method:
Rfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'reflector_mspct'
Rfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

300 Rfr_normdiff

)

Arguments

spct an object of class "reflector_spct".
w.band.plus, w.band.minus

waveband object(s) or a list(s) of waveband objects used to compute the additive
and subtractive reflectance terms of the normalized difference index.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)
quantity character One of "total", "average" or "mean".
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
name.tag character Used to tag the name of the returned values.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral photon reflectances, one computed for each waveband.

Rfrλ(s, wbplus)− Rfrλ(s, wbminus)

Rfrλ(s, wbplus) + Rfrλ(s, wbminus)

If the argument is set to quantity = "total" the fraction is based on two photon reflectances, one
computed for each waveband.

Rfr(s, wbplus)− Rfr(s, wbminus)

Rfr(s, wbplus) + Rfr(s, wbminus)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Rfr_normdiff 301

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_normdiff(default): Default for generic function

• Rfr_normdiff(reflector_spct): Method for reflector_spct objects

• Rfr_normdiff(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult =T RUE. However, be aware
that you are responsible for ensuring that the wavelengths are the same in each call, as the only test
done is for the length of the w.length vector.

See Also

normalized_diff_ind, accepts different summary functions.

Other Reflectance ratio functions: Rfr_fraction(), Rfr_ratio()

Examples

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

302 Rfr_ratio

Rfr_ratio reflectance:reflectance ratio

Description

This function returns the reflectance ratio for a given pair of wavebands of a reflector spectrum.

Usage

Rfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Rfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

Rfr_ratio 303

S3 method for class 'reflector_mspct'
Rfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "reflector_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

304 Rfr_ratio

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral reflectance, one computed for each waveband.

Rfrλ(s, wbnum)

Rfrλ(s, wbdenom))

If the argument is set to quantity = "total" the ratio is based on two integrated reflectance, one
computed for each waveband.

Rfr(s, wbnum)

Rfr(s, wbdenom)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_ratio(default): Default for generic function

• Rfr_ratio(reflector_spct): Method for reflector_spct objects

• Rfr_ratio(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

rgb_spct 305

See Also

Other Reflectance ratio functions: Rfr_fraction(), Rfr_normdiff()

Examples

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

rgb_spct RGB color values

Description

This function returns the RGB values for a source spectrum.

Usage

rgb_spct(spct, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)

Arguments

spct an object of class "source_spct"

sens a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF
definition (default is the proposed human CMF according to CIE 2006.)

color.name character string for naming the rgb color definition

Value

A color defined using rgb(). The numeric values of the RGB components can be obtained

See Also

Other color functions: w_length2rgb(), w_length_range2rgb()

Examples

rgb_spct(sun.spct)

306 rmDerivedSpct

rmDerivedMspct Remove "generic_mspct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_mspct" and any derived class attribute
such as "source_mspct". This operation is done by reference!

Usage

rmDerivedMspct(x)

Arguments

x an R object.

Value

A character vector containing the removed class attribute values. This is different to the behaviour
of function unlist in base R!

Note

If x is an object of any of the multi spectral classes defined in this package, this function changes
by reference the multi spectrum object into the underlying list object. Otherwise, it just leaves x
unchanged. The modified x is also returned invisibly.

See Also

Other set and unset ’multi spectral’ class functions: shared_member_class()

rmDerivedSpct Remove "generic_spct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_spct" and any derived class at-
tribute such as "source_spct". This operation is done by reference!

Usage

rmDerivedSpct(x, keep.classes = NULL)

round 307

Arguments

x an R object.
keep.classes character vector Names of classes to keep. Can be used to retain base class

"generic_spct".

Details

This function alters x itself by reference. If x is not a generic_spct object, x is not modified. This
function behaves similarly to setdiff() but preserving the original order of the character vector of
the S3 class names.

Value

A character vector containing the removed class attribute values. This is different to the behaviour
of function unlist in base R!

Note

If x is an object of any of the spectral classes defined in this package, this function changes by
reference the spectrum object into the underlying data.frame object. Otherwise, it just leaves x
unchanged.

See Also

Other set and unset spectral class functions: setGenericSpct()

Examples

my.spct <- sun.spct
removed <- rmDerivedSpct(my.spct)
removed
class(sun.spct)
class(my.spct)

round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x. \ floor takes a single numeric argument
x and returns a numeric vector containing the largest integers not greater than the corresponding
elements of x. \ trunc takes a single numeric argument x and returns a numeric vector containing
the integers formed by truncating the values in x toward 0. \ round rounds the values in its first
argument to the specified number of decimal places (default 0). \ signif rounds the values in its
first argument to the specified number of significant digits. \ The functions are applied to the spectral
data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on
the class of x and the current value of output options.

308 select_spct_attributes

Usage

S3 method for class 'generic_spct'
round(x, digits = 0)

S3 method for class 'generic_spct'
signif(x, digits = 6)

S3 method for class 'generic_spct'
ceiling(x)

S3 method for class 'generic_spct'
floor(x)

S3 method for class 'generic_spct'
trunc(x, ...)

Arguments

x an object of class "generic_spct" or a derived class.

digits integer indicating the number of decimal places (round) or significant digits (sig-
nif) to be used. Negative values are allowed (see ’Details’).

... arguments to be passed to methods.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, sign(), slash-.generic_spct,
times-.generic_spct

select_spct_attributes

Merge user supplied attribute names with default ones

Description

Allow users to add and subtract from default attributes in addition to providing a given set of at-
tributes.

Usage

select_spct_attributes(attributes, attributes.default = spct_attributes())

spct_attributes(.class = "all", attributes = "*")

setBSWFUsed 309

Arguments

attributes, attributes.default
character vector or a list of character vectors.

.class character Name of spectral class.

Details

Vectors of character strings passed as argument to attributes are parsed so that if the first member
string is "+", the remaining members are added to those in attributes.default; if it is "-" the
remaining members are removed from in attributes.default; and if it is "=" the remaining
members replace those in in attributes.default. If the first member is none of these three
strings, the behaviour is the same as when the first string is "=". If attributes is NULL all the
attributes in attributes.default are used and if it is "" no attribute names are returned, "" has
precedence over other member values. The order of the names of annotations has no meaning: the
vector is interpreted as a set except for the three possible "operators" at position 1.

Value

A character vector of attribute names.

See Also

get_attributes

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), setFilterProperties(),
setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

setBSWFUsed The "bswf.used" attribute

Description

Function to set by reference the "time.unit" attribute of an existing source_spct object, and
function to query its value.

Usage

setBSWFUsed(x, bswf.used = c("none", "unknown"))

getBSWFUsed(x)

Arguments

x a source_spct object.
bswf.used a character string, either "none" or the name of a BSWF.

310 setFilterProperties

Details

Effective spectral irradiance, describes an estimate of the strength of the radiation towards eliciting
a given response, frequently, but not only a biological response. The biological spectral weighting
function, BSWF, used, can be for example that of the human eye, or an action spectrum, such as the
erythema, or reddening of the human skin, action spectrum.

IBE(λ) = I(λ)× fBE(λ)

where, IBE(λ) is the biologically effective spectral irradiance, I(λ) is the spectral irradiance and
fBE(λ) is one of many possible BSWF.

When the values stored in a source_spct object have been multiplied by those from a curve de-
scribing a certain response or effect, the attribute "time.unit" is set accordingly to track the trans-
formation applied to the data. When a spectral response data have been directly measured, they
should be stored in an object of class response_spct as they are expressed in actual response units,
not of class source_spct expressed in irradiance units, even if weighted. However, when like in
the case of spectral illuminance, the aim is technical measure of a light source, class source_spct
should be used and the BSWF set in the metadata.

This attribute is normally set by the function or operator used to apply the BSWF to spectral irradi-
ance data, or set when the source_spct object is created.

Value

x or the character value stored in x.

Note

Function setBSWFUsed() alters x itself by reference and in addition returns x invisibly. If x is
not a source_spct, x is not modified. The behaviour of this function is ’unusual’ in that the
default for parameter bswf.used is used only if x does not already have this attribute set. Function
getBSWFUsed() returns the value to which the attribute is set as a character string and otherwise
NA.

Examples

getBSWFUsed(sun.spct)

setFilterProperties Set the "filter.properties" attribute

Description

Function to set by reference the "filter.properties" attribute of an existing filter_spct object.

setFilterProperties 311

Usage

setFilterProperties(
x,
filter.properties = NULL,
pass.null = FALSE,
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA_character_

)

filter_properties(x) <- value

Arguments

x a filter_spct object
filter.properties, value

a list with fields named "Rfr.constant", "thickness" and "attenuation.mode".

pass.null logical If TRUE, the parameters to the next three parameters will be always ig-
nored, otherwise they will be used to build an object of class "filter.properties"
when the argument passed to parameter filter.properties is NULL.

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material [m].
attenuation.mode

character One of "reflection", "absorption", "absorption.layer", "mixed"
or "stack".

Details

Storing filter properties allows inter-conversion between internal and total transmittance, as well
as computation of transmittance for arbitrary thickness of the material. Whether computations are
valid depend on the homogeneity of the material. The parameter pass.null makes it possible to
remove the attribute.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct
object, x is not modified.

The values of attenuation.mode "reflection" and "absorption" should be used when one
of these processes is clearly the main one; "mixed" is for cases when they both play a role,
i.e., when a simple correction using a single value of Rfr across wavelengths is not possible;
"absorption.layer" is for cases when a thin absorbing layer is deposited on the surface of a
transparent support or enclosed between two sheets of glass or other transparent material. If in
doubt, set this to NA to ensure that computation of spectra for a different thickness remains disabled.

312 setGenericSpct

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- polyester.spct
filter_properties(my.spct)
filter_properties(my.spct) <- NULL
filter_properties(my.spct)
filter_properties(my.spct, return.null = TRUE)
filter_properties(my.spct) <- list(Rfr.constant = 0.01,

thickness = 125e-6,
attenuation.mode = "absorption")

filter_properties(my.spct)

setGenericSpct Convert an R object into a spectrum object.

Description

Sets the class attribute of a data.frame or an object of a derived class to "generic_spct".

Usage

setGenericSpct(x, multiple.wl = 1L, idfactor = NULL)

setCalibrationSpct(
x,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setRawSpct(
x,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setCpsSpct(

setGenericSpct 313

x,
time.unit = "second",
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setFilterSpct(
x,
Tfr.type = c("total", "internal"),
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setSoluteSpct(
x,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NA_character_,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setReflectorSpct(
x,
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setObjectSpct(
x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

314 setGenericSpct

)

setResponseSpct(
x,
time.unit = "second",
response.type = "response",
multiple.wl = 1L,
idfactor = NULL

)

setSourceSpct(
x,
time.unit = "second",
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setChromaSpct(x, multiple.wl = 1L, idfactor = NULL)

Arguments

x data.frame, list or generic_spct and derived classes

multiple.wl numeric Maximum number of repeated w.length entries with same value.

idfactor character Name of factor distinguishing multiple spectra when stored longitudi-
nally (required if mulitple.wl > 1).

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

Tfr.type character Either "total" or "internal".

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material.
attenuation.mode

character One of "reflection", "absorption" or "mixed".

K.type character A string, either "attenuation", "absorption" or "scattering".
name, solvent.name

character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The mass in Dalton (Da = g/mol).

formula character The molecular formula.

structure raster A bitmap of the structure.

setGenericSpct 315

ID, solvent.ID character The IDs of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChen" for the authority.

Rfr.type character A string, either "total" or "specular".

response.type a character string, either "response" or "action".

bswf.used character A string, either "none" or the name of a BSWF. (Users seldom need
to change the default, as this metadata value is in normal use set by operators or
functions that apply a BSWF.)

Details

This method alters x itself by reference and in addition returns the modified x invisibly. The wave-
length values and data are checked for validity and out-of-range values trigger warnings. These
checks are done during construction by means of the matching check_spct methods, unless checks
have been disabled by setting the corresponding option (see enable_check_spct).

Value

x

Functions

• setCalibrationSpct(): Set class of a an object to "calibration_spct".

• setRawSpct(): Set class of a an object to "raw_spct".

• setCpsSpct(): Set class of a an object to "cps_spct".

• setFilterSpct(): Set class of an object to "filter_spct".

• setSoluteSpct(): Set class of an object to "solute_spct".

• setReflectorSpct(): Set class of a an object to "reflector_spct".

• setObjectSpct(): Set class of an object to "object_spct".

• setResponseSpct(): Set class of an object to "response_spct".

• setSourceSpct(): Set class of an object to "source_spct".

• setChromaSpct(): Set class of an object to "chroma_spct".

Warning!

Not entering metadata when creating an object will limit the available operations!

Note

"internal" transmittance is defined as the transmittance of the material body itself, while "total"
transmittance includes the effects of surface reflectance on the amount of light transmitted. For non-
diffusing materials like glass an approximate Rfr.constant value can be used to inter-convert total
and internal transmittance values. Use NA if the the mode is not known, or not applicable, e.g.,
for materials subject to internal scattering. The validity of computations related to thickness of the
material or length of the light path depends on the availability and accuracy of the metadata.

Particles in suspension unlike dissolved solutes scatter light. Thus two different processes can
attenuate light in liquid media: absorption and scattering. Coefficients of attenuation are always

316 setHowMeasured

based on measurements of internal absorbance or internal transmittance. In practice this is achieved
by using as reference pure solvent in a vessel, such as a spectrometer cuvette, called blank. The
measurement of the blank is done sequentially, before or after the sample of interest in single beam
spectrophotometers and concurrently in double beam spectrophotometers. K.type describes the
process of attenuation: "attenuation", "absorption" or "scattering", with "attenuation"
used for cases of mixed modes of attenuation. Set K.type = NA if not available or unknown, or not
applicable.

"specular" reflectance is defined as that measured by collecting the light reflected by the surface
at the “mirror” of the angle of incidence; i.e., using a probe with a narrow angle of aperture. Usually
measured close to normal angle of incidence. "total" reflectance is defined as that measured by
collecting all the light reflected by the surface; i.e., using an integrating sphere. In a mirror, re-
flectance is mostly specular, while on the white surface of a sheet of paper scattering predominates.
In the first case the value for total reflectance is not much more than for specular reflectance, while
in the second case the difference is much larger as the "specular" component is much smaller.

See Also

Other set and unset spectral class functions: rmDerivedSpct()

Examples

my.df <- data.frame(w.length = 300:309, s.e.irrad = rep(100, 10))
is.source_spct(my.df)
setSourceSpct(my.df)
is.source_spct(my.df)

setHowMeasured Set the "how.measured" attribute

Description

Function to set by reference the "how.measured" attribute of an existing generic_spct or derived-
class object.

Usage

setHowMeasured(x, how.measured)

how_measured(x) <- value

Arguments

x a generic_spct object
how.measured, value

a list

setIdFactor 317

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
how_measured(my.spct)
how_measured(my.spct) <- "simulated with a radiation transfer model"
how_measured(my.spct)

setIdFactor Set the "idfactor" attribute

Description

Function to set, rename or unset by reference the "idfactor" attribute of an existing object of class
generic_spct or an object of a class derived from generic_spct.

Usage

setIdFactor(x, idfactor)

id_factor(x) <- value

Arguments

x a generic_spct object.

idfactor, value character The name of a factor identifying multiple spectra stored longitudinally.

318 setInstrDesc

Details

If the attribute idfactor is already set, and a variable with name equal to the value passed as
argument to idfactor does not exist in x, the currently set variable is renamed and the attribute
value updated. If a variable named as the argument passed to idfactor exists in x, it will be set
as id by storing this name in the attribute. If the value passed as argument to idfactor is NULL the
attribute will be unset. If the attribute is not already set and there is no member variable in x with a
name matching the argument passed to idfactor, an error is triggered.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
or an object of a class derived from generic_spct, x is not modified.

See Also

Other idfactor attribute functions: getIdFactor()

Examples

my.spct <- sun_evening.spct

inspecting
id_factor(sun.spct) # no idfactor set

id_factor(my.spct)
colnames(my.spct)

renaming
id_factor(my.spct) <- "time"
getIdFactor(my.spct)
colnames(my.spct)

removing
setIdFactor(my.spct, NULL)
getIdFactor(my.spct)
colnames(my.spct)

setInstrDesc Set the "instr.desc" attribute

Description

Function to set by reference the "instr.desc" attribute of an existing generic_spct or derived-class
object.

setInstrSettings 319

Usage

setInstrDesc(x, instr.desc)

instr_descriptor(x) <- value

Arguments

x a generic_spct object
instr.desc, value

a list

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

The fields to be passed in the list instr.desc in part vary depending on the instrument brand and
model.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

setInstrSettings Set the "instr.settings" attribute

Description

Function to set by reference the "what.measured" attribute of an existing generic_spct or derived-
class object.

Usage

setInstrSettings(x, instr.settings)

instr_settings(x) <- value

320 setKType

Arguments

x a generic_spct object
instr.settings, value

a list

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

setKType Set the "K.type" attribute

Description

Function to set by reference the "K.type" attribute of an existing solute_spct object

Usage

setKType(x, K.type = c("attenuation", "absorption", "scattering"))

Arguments

x a solute_spct or a summary_solute_spct object.

K.type character A string, either "attenuation", "absorption" or "scattering".

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a solute_spct
object, x is not modified The behaviour of this function is ’unusual’ in that the default for parameter
K.type is used only if x does not already have this attribute set.

setMultipleWl 321

See Also

Other K attribute functions: getKType()

Examples

print("missing example")

setMultipleWl Set the "multiple.wl" attribute

Description

Function to set by reference the multiple.wl attribute of an existing generic_spct object or an
object of a class derived from generic_spct.

Usage

setMultipleWl(x, multiple.wl = NULL)

multiple_wl(x) <- value

Arguments

x a generic_spct object

multiple.wl, value
numeric >= 1 If multiple.wl = NULL, the default, the value is guessed.

Details

These methods set the attribute multiple.wl and if the argument of multiple.wl or value is
NULL, they call findMultipleWl to obtain a guess. Pathological cases where multiple spectra in
long form do not share any wavelength value underestimate the number of spectra, and require an
explicit numeric argument. Calling these methods is very rarely needed in user code.

Value

x, modified in place by reference. If x is not a generic_spct or an object of a class derived from
generic_spct, x is not modified.

See Also

Other multiple.wl attribute functions: getMultipleWl()

322 setNormalized

Examples

my.spct <- sun.spct
setMultipleWl(my.spct) # default is to search x, here my.spct
getMultipleWl(my.spct)

multiple_wl(my.spct) <- 1L # must be a valid value or NULL!
multiple_wl(my.spct)

multiple_wl(my.spct) <- NULL # must be a valid value or NULL!
multiple_wl(my.spct)

setNormalized Set the "normalized" and "normalization" attributes

Description

Function to write the "normalized" attribute of an existing generic_spct object.

Usage

setNormalized(
x,
norm = FALSE,
norm.type = NA_character_,
norm.factors = NA_real_,
norm.cols = NA_character_,
norm.range = rep(NA_real_, 2),
verbose = getOption("verbose_as_default", default = FALSE)

)

setNormalised(
x,
norm = FALSE,
norm.type = NA_character_,
norm.factors = NA_real_,
norm.cols = NA_character_,
norm.range = rep(NA_real_, 2),
verbose = getOption("verbose_as_default", default = FALSE)

)

Arguments

x a generic_spct object.

norm numeric (or logical) Normalization wavelength (nanometres).

norm.type character Type of normalization applied.

setResponseType 323

norm.factors numeric The scaling factor(s) so that dividing the spectral values by this factor
reverts the normalization.

norm.cols character The name(s) of the data columns normalized.

norm.range numeric The wavelength range used for normalization (nm).

verbose logical Flag enabling or silencing informative warnings.

Details

This function is used internally, although occasionally users may want to use it to "pretend" that
spectral data have not been normalized. Use normalize() methods to apply a normalization and
set the attributes accordingly. Function setNormalized() only sets the attributes that store the
metadata corresponding to an already applied normalization. Thus a trace of the transformations
applied to spectral data is kept, which currently is used to renormalize the spectra when the quantity
used for expression is changed with a conversion function. It is also used in other packages like
’ggspectra’ when generating automatically axis labels. If x is not a generic_spct object, x is not
modified.

Note

Passing a logical as argument to norm is deprecated but accepted silently for backwards compati-
bility.

setNormalised() is a synonym for this setNormalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setScaled()

setResponseType Set the "response.type" attribute

Description

Functions to set by reference the "response.type" attribute of an existing response_spct object,
and to query its value.

Usage

setResponseType(x, response.type = c("response", "action"))

getResponseType(x)

Arguments

x a response_spct object

response.type a character string, either "response" or "action"

324 setRfrType

Details

Objects of class response_spct() can contain data for a response spectrum or an action spectrum.
Response spectra are measured using the same photon (or energy) irradiance at each wavelength.
Action spectra are derived from dose response curves at each wavelength, and responsivity at each
wavelength is expressed as the reciprocal of the photon fluence required to obtain a fixed level of
response. In the case of biological systems the action and response spectra frequently differ in their
shape and spectral values. This is a property inherent to a data set and not subject to conversions,
thus normally set when a response_spct object is created and never modified.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a re-
sponse_spct object, x is not modified The behaviour of this function is ’unusual’ in that the default
for parameter response.type is used only if x does not already have this attribute set.

Examples

my.spct <- ccd.spct
setResponseType(my.spct, "action")
getResponseType(ccd.spct)
getResponseType(sun.spct)

setRfrType The "Rfr.type" attribute

Description

Function to set by reference the "Rfr.type" attribute of an existing reflector_spct or object_spct
object, and function to query its current status.

Usage

setRfrType(x, Rfr.type = c("total", "specular"))

getRfrType(x)

Arguments

x a reflector_spct or an object_spct object.

Rfr.type character String, either "total" or "specular".

setRfrType 325

Details

Reflectance can be measured by collecting the light reflected out of a surface in all directions, using
an integrating sphere, obtaining a quantity called total reflectance. If instead, the reflected light
is collected at a narrow angle mirroring the incident angle, only part of the reflected radiation is
collected, corresponding to mirror-like reflection, called specular. Thus,

ρ = ρs + ρd

where, ρ is total reflectance, and its components, ρs, specular reflectance, and ρd, diffuse or scat-
tered reflectance. When strong scattering takes place, total reflectance can be much more than the
specular component. In most cases ρd is not measured directly.

The distinction depends on the measuring procedure, and this information is stored as metadata in
an attribute of objects of classes reflector_spct or an object_spct.

When converting between internal and total transmittance, or computing absorptance by difference
based on transmittance and reflectance, only total reflectance can be meaningfully used (if the object
does not noticeably scatter light, it may be possible to assume that specular reflectance represents
most of the total reflectance.) Consequently, checking the stored value of this attribute is used as a
safeguard in these compuations.

This attribute is normally set when the source_spct object is created.

Value

x, with the modified attribute in the case of setRfrType() or the character value, "total" or
"specular", stored in the "Rfr.type" attribute of x in the case of getRfrType(). If x is not a
reflector_spct or an object_spct object, NA is returned.

Note

Function setRfrType() alters x itself by reference and in addition returns x invisibly. If x is not
a reflector_spct or an object_spct object, x is not modified. The behaviour of this function
is ’unusual’ in that the default for parameter Rfr.type is used only if x does not already have this
attribute set.

See Also

reflector_spct and object_spct.

Examples

my.spct <- reflector_spct(w.length = 400:409, Rfr = 0.1)
getRfrType(my.spct)
setRfrType(my.spct, "specular")
getRfrType(my.spct)

326 setScaled

setScaled Set the "scaled" attribute

Description

Function to write the "scaled" attribute of an existing generic_spct object.

Usage

setScaled(x, ...)

Default S3 method:
setScaled(x, ...)

S3 method for class 'generic_spct'
setScaled(x, ..., scaled = FALSE)

S3 method for class 'summary_generic_spct'
setScaled(x, ..., scaled = FALSE)

S3 method for class 'generic_mspct'
setScaled(x, ..., scaled = FALSE)

Arguments

x a generic_spct object.

... currently ignored.

scaled logical with FALSE meaning that values are expressed in absolute physical units
and TRUE meaning that relative units are used. If NULL the attribute is not modi-
fied.

Value

a new object of the same class as x.

a new object of the same class as x.

a new object of the same class as x.

a new object of the same class as x.

Methods (by class)

• setScaled(default): Default for generic function

• setScaled(generic_spct): Specialization for generic_spct

• setScaled(summary_generic_spct): Specialization for summary_generic_spct

• setScaled(generic_mspct): Specialization for generic_mspct

setSoluteProperties 327

Note

if x is not a generic_spct object, x is not modified.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setNormalized()

setSoluteProperties Set the "solute.properties" attribute

Description

Function to set by reference the "solute.properties" attribute of an existing solute_spct ob-
ject.

Usage

setSoluteProperties(
x,
solute.properties = NULL,
pass.null = FALSE,
mass = NA_real_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
name = NA_character_,
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_

)

solute_properties(x) <- value

Arguments

x solute_spct A spectrum of coefficients of attenuation.
solute.properties, value

a list with fields named "mass", "formula", "structure", "name" and "ID".

pass.null logical If TRUE, the parameters to the next three parameters will be always ig-
nored, otherwise they will be used to build an object of class "solute.properties"
when the argument to solute.properties is NULL.

mass numeric The mass in Dalton [Da = gmol−1].

formula character The molecular formula.

structure raster A bitmap of the structure.

328 setSoluteProperties

name, solvent.name
character The name of the substance and the name of the solvent. A named
character vector, with member names such as "IUPAC" for the authority.

ID, solvent.ID character The names of the substance and of the solvent. A named character
vector, with member names such as "ChemSpider" or "PubChen" for the author-
ity.

Details

Storing solute properties allows inter-conversion between bases of expression, and ensures the un-
ambiguous identification of the substances to which the spectral data refer. These properties make
it possible to compute filter_spct objects for solutions of the solute, i.e., absorption spectra of
liquid filters. The parameter pass.null makes it possible to remove the attribute. The solvent used
for the determination of the attenuation coefficient is important metadata as the solvent can alter the
spectral ansorption properties of the solute.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

solute.properties <-
list(formula = c(text = "H2O", html = "H₂", TeX = "H_2O"),

name = c("water", IUPAC = "oxidane"),
structure = grDevices::as.raster(matrix()),
mass = 18.015, # Da
ID = c(ChemSpider = "917", CID = "962"),
solvent.name = NA_character_,
solvent.ID = NA_character_)

my.spct <- solute_spct()
solute_properties(my.spct) <- solute.properties
solute_properties(my.spct)
solute_properties(my.spct) <- NULL
solute_properties(my.spct)
solute_properties(my.spct, return.null = TRUE)
solute_properties(my.spct)

setTfrType 329

setTfrType The "Tfr.type" attribute

Description

Function to set by reference the "Tfr.type" attribute of an existing filter_spct or object_spct
object, and function to query its current status.

Usage

setTfrType(x, Tfr.type = c("total", "internal"))

getTfrType(x)

Arguments

x a filter_spct or an object_spct object.

Tfr.type character string, either "total" or "internal".

Details

Transmittance, T or τ , has two different definitions that differ in how reflectance is taken into
account: "total" transmittance and "internal" transmittance. They are both in widespread use, and
rather frequently the interconversion is approximate or even not possible.

T =
Iz
I0

τ =
Iz

I0 − ρ

where T is total transmittance and τ is internal transmittance; I0 is the radiant power incident on
an object and Iz is the radiant power at depth z, in most cases measured below the non-illuminated
side of the object, and ρ is the total reflectance at the illuminated surface.

The transmittance of an object as a whole depends on the length of the light path within the object
and reflectance on the angle of incidence of the light on the surface. When the light beam is near-
normal to the surface, both quantities are at their minimum.

Thus, the interconversion of total spectral transmittance, T (λ), into internal spectral transmittance,
τ(λ), is strictly possible only if the spectral reflectance ρ(λ) is known. In practice, the spectral
reflectance is approximated by a constant value that is assumed independent of wavelength.

Objects of class object_spct contain spectral data for both spectral transmittance and spectral
reflectance or spectral absorptance, making conversion possible. Objects of class filter_spct do
not contain spectral reflectance data, but may have a known approximate value for a reflectance
constant, but this is frequently not the case.

330 setTfrType

The type of transmittance data stored in an object of these classes is recorded as metadata in attribute
Tfr.Type. The functions described here set and query this attribute. Contrary to directly accessing
the attribute, the query function consistently returns NA both when the attribute is set to NA and
when the attribute has not been set, as can be the case of objects created with early versions of the
package.

Absorptance, α, and absorbance, A, are normally given as "internal", and this is the assumption
in this package. However, as in some cases strict enforcement would prevent conversions, this is not
strictly enforced. (IUPAC, recommends use of the name attenuance (formerly extinction) instead of
absorbance when light attenuation involves processes other than pure absorption, such as scattering
and luminescence.)

1 = α+ ρ+ τ

A10 = log10
1

α
= − log10 α

When a solvent-only blank is used when measuring the absorbance of a solution, the absorbance
is not only "internal" to the solution (discounting reflections at the cuvette boundaries) but also
discounts the effect of the solvent itself. When measuring solid samples, like a sheet of glass, in
most cases a blank is not available.

For semitransparent objects like glass, it is important to take into account that reflections occur at
each interface between substances with different refractive index.

This attribute is normally set when the source_spct object is created. But convertTfrType()
updates it when it changes due to a conversion.

Value

x, with the modified attribute in the case of setTfrType() or the character value, "total" or
internal, stored in the "Tfr.type" attribute of x in the case of getTfrType(). If x is not a
filter_spct or an object_spct object, NA is returned.

Note

Function setTfrType() alters x itself by reference and in addition returns x invisibly. If x is not
a filter_spct or an object_spct object, x is not modified. The behaviour of this function is
’unusual’ in that the default for parameter Tfr.type is used only if x does not already have this
attribute set.

See Also

convertTfrType, filter_spct, and object_spct.

Examples

my.spct <- polyester.spct
getTfrType(my.spct)
setTfrType(my.spct, "internal")
getTfrType(my.spct)

setTimeUnit 331

setTimeUnit Set the "time.unit" attribute of an existing source_spct object

Description

Function to set by reference the "time.unit" attribute

Usage

setTimeUnit(
x,
time.unit = c("second", "hour", "day", "exposure", "none"),
override.ok = FALSE

)

Arguments

x a source_spct object

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second" , "day" or "exposure") or an object of class duration as defined in
package lubridate.

override.ok logical Flag that can be used to silence warning when overwriting an existing
attribute value (used internally)

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a source_spct
or response_spct object, x is not modified. The behaviour of this function is ’unusual’ in that the
default for parameter time.unit is used only if x does not already have this attribute set. time.unit
= "hour" is currently not fully supported.

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), convertTimeUnit(),
getTimeUnit()

Examples

my.spct <- sun.spct
setTimeUnit(my.spct, time.unit = "second")
setTimeUnit(my.spct, time.unit = lubridate::duration(1, "seconds"))

332 setWhatMeasured

setWhatMeasured Set the "what.measured" attribute

Description

Function to set by reference the "what.measured" attribute of an existing generic_spct or derived-
class object.

Usage

setWhatMeasured(x, what.measured)

what_measured(x) <- value

Arguments

x a generic_spct object
what.measured, value

a list

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
what_measured(my.spct)
what_measured(my.spct) <- "Sun"
what_measured(my.spct)

setWhenMeasured 333

setWhenMeasured Set the "when.measured" attribute

Description

Function to set by reference the "when" attribute of an existing generic_spct or an object of a class
derived from generic_spct.

Usage

setWhenMeasured(x, when.measured, ...)

when_measured(x) <- value

Default S3 method:
setWhenMeasured(x, when.measured, ...)

S3 method for class 'generic_spct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

S3 method for class 'summary_generic_spct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

S3 method for class 'generic_mspct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

Arguments

x a generic_spct object

when.measured, value
POSIXct to add as attribute, or a list of POSIXct.

... Allows use of additional arguments in methods for other classes.

Value

x

Methods (by class)

• setWhenMeasured(default): default

• setWhenMeasured(generic_spct): generic_spct

• setWhenMeasured(summary_generic_spct): summary_generic_spct

• setWhenMeasured(generic_mspct): generic_mspct

334 setWhereMeasured

Note

This method alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
or an object of a class derived from generic_spct, x is not modified. If when is not a POSIXct object
or NULL an error is triggered. A POSIXct describes an instant in time (date plus time-of-day plus
time zone).

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
when_measured(my.spct)
when_measured(my.spct) <- lubridate::ymd_hms("2020-01-01 08:00:00")
when_measured(my.spct)

setWhereMeasured Set the "where.measured" attribute

Description

Function to set by reference the "where.measured" attribute of an existing generic_spct or an object
of a class derived from generic_spct.

Usage

setWhereMeasured(x, where.measured, lat, lon, address, ...)

where_measured(x) <- value

Default S3 method:
setWhereMeasured(x, where.measured, lat, lon, address, ...)

S3 method for class 'generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

S3 method for class 'summary_generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

S3 method for class 'generic_mspct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

setWhereMeasured 335

Arguments

x a generic_spct object
where.measured, value

A one row data.frame such as returned by function geocode from package
’ggmap’ for a location search.

lat numeric Latitude in decimal degrees North

lon numeric Longitude in decimal degrees West

address character Human readable address

... Allows use of additional arguments in methods for other classes.

Value

x

Methods (by class)

• setWhereMeasured(default): default

• setWhereMeasured(generic_spct): generic_spct

• setWhereMeasured(summary_generic_spct): summary_generic_spct

• setWhereMeasured(generic_mspct): generic_mspct

Note

This method alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
or an object of a class derived from generic_spct, x is not modified. If where is not a POSIXct
object or NULL an error is triggered. A POSIXct describes an instant in time (date plus time-of-day
plus time zone). As expected passing NULL as argument for where.measured unsets the attribute.

Method for collections of spectra recycles the location information only if it is of length one.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
where_measured(my.spct)
where_measured(my.spct) <- data.frame(lon = 0, lat = -60)
where_measured(my.spct)

336 sign

shared_member_class Classes common to all collection members.

Description

Finds the set intersection among the class attributes of all collection member as a target set of class
names.

Usage

shared_member_class(l, target.set = spct_classes())

Arguments

l a list or a generic_mspct object or of a derived class.
target.set character The target set of classes within which to search for classes common to

all members.

Value

A character vector containing the class attribute values.

See Also

Other set and unset ’multi spectral’ class functions: rmDerivedMspct()

sign Sign

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number
is 1, 0, or -1 if the number is positive, zero, or negative, respectively).

Usage

S3 method for class 'generic_spct'
sign(x)

Arguments

x an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), slash-.generic_spct,
times-.generic_spct

slash-.generic_spct 337

slash-.generic_spct Arithmetic Operators

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 / e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
times-.generic_spct

smooth_spct Smooth a spectrum

Description

These functions implement one original methods and acts as a wrapper for other common R smooth-
ing functions. The advantage of using this function for smoothing spectral objects is that it simplifies
the user interface and sets, when needed, defaults suitable for spectral data.

Usage

smooth_spct(x, method, strength, wl.range, ...)

Default S3 method:
smooth_spct(x, method, strength, wl.range, ...)

S3 method for class 'source_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,

338 smooth_spct

na.rm = FALSE,
...

)

S3 method for class 'filter_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'reflector_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'solute_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'response_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
smooth_spct(
x,
method = "custom",

smooth_spct 339

strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'generic_mspct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

Arguments

x an R object.

method a character string "custom", "lowess", "supsmu" or "skip"..

strength numeric value to adjust the degree of smoothing. Ignored if method-specific
parameters are passed through

wl.range any R object on which applying the method range() yields a vector of two nu-
meric values, describing a range of wavelengths (nm) within which spectral data
is to be smoothed. NA is interpreted as the min or max value of x[[w.length]].

... other parameters passed to the underlying smoothing functions.

na.rm logical A flag indicating whether NA values should be stripped before the com-
putation proceeds.

Value

A copy of x with spectral data values replaced by smoothed ones.

Methods (by class)

• smooth_spct(default): Default for generic function

• smooth_spct(source_spct): Smooth a source spectrum

• smooth_spct(filter_spct): Smooth a filter spectrum

• smooth_spct(reflector_spct): Smooth a reflector spectrum

• smooth_spct(solute_spct): Smooth a solute attenuation spectrum

• smooth_spct(response_spct): Smooth a response spectrum

• smooth_spct(cps_spct): Smooth a counts per second spectrum

• smooth_spct(generic_mspct):

340 solar_time

Note

Method "custom" is our home-brewed method which applies strong smoothing to low signal regions
of the spectral data, and weaker or no smoothing to the high signal areas. Values very close to zero
are set to zero with a limit which depends on the local variation. This method is an ad-hock method
suitable for smoothing spectral data obtained with spectrometers. In the cased of methods "lowess"
and "supsmu" the current function behaves like a wrapper of the functions of the same names from
base R. Method "skip" returns x unchanged.

Examples

my.spct <- clip_wl(sun.spct, c(400, 500))
smooth_spct(my.spct)
smooth_spct(my.spct, method = "custom", strength = 1)
smooth_spct(my.spct, method = "custom", strength = 4)
smooth_spct(my.spct, method = "supsmu", strength = 4)

solar_time Local solar time

Description

solar_time() computes the time of day expressed in seconds since the astronomical midnight
using and instant in time and a geocode as input. Solar time is useful when we want to plot data
according to the local solar time rather than the local time in use at a time zone. How the returned
instant in time is expressed depends on the argument passed to unit.out.

Usage

solar_time(
time = lubridate::now(),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
unit.out = "time"

)

Arguments

time POSIXct Time, any valid time zone (TZ) is allowed, default is current time

geocode data frame with variables lon and lat as numeric values (degrees).

unit.out character string, One of "datetime", "time", "hour", "minute", or "second".

Details

Solar time is determined by the position of the sun in the sky and it almost always differs from the
time expressed in the local time coordinates in use. The differences can vary from a few minutes
up to a couple of hours depending on the exact location within the time zone and the use or not of
daylight saving time.

source_spct 341

Value

In all cases solar time is expressed as time since local astronomical midnight and, thus, lacks date
information. If unit.out = "time", a numeric value in seconds with an additional class attribute
"solar_time"; if unit.out = "datetime", a "POSIXct" value in seconds from midnight but with an
additional class attribute "solar_date"; if unit.out = "hour" or unit.out = "minute" or unit.out
= "second", a numeric value.

Warning!

Returned values are computed based on the time zone of the argument for parameter time. In the
case of solar time, this timezone does not affect the result. However, in the case of solar dates the
date part may be off by one day, if the time zone does not match the coordinates of the geocode
value provided as argument.

Note

The algorithm is approximate, it calculates the difference between local solar noon and noon in the
time zone of time and uses this value for the whole day when converting times into solar time.
Days are not exactly 24 h long. Between successive days the shift is only a few seconds, and this
leads to a small jump at midnight.

See Also

as_tod

Other Local solar time functions: as.solar_date(), is.solar_time(), print.solar_time()

Examples

BA.geocode <-
data.frame(lon = -58.38156, lat = -34.60368, address = "Buenos Aires, Argentina")

sol_t <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),
BA.geocode)

sol_t
class(sol_t)

sol_d <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),
BA.geocode,
unit.out = "datetime")

sol_d
class(sol_d)

source_spct Spectral-object constructors

342 source_spct

Description

These constructor functions can be used to create spectral objects derived from generic_spct.
They take as arguments numeric vectors for the wavelengths and spectral data, and numeric, char-
acter, and logical values for metadata attributes to be saved to the objects created and options con-
trolling the creation process.

Usage

source_spct(
w.length = NULL,
s.e.irrad = NULL,
s.q.irrad = NULL,
...,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

calibration_spct(
w.length = NULL,
irrad.mult = NA_real_,
...,
comment = NULL,
instr.desc = NA,
multiple.wl = 1L,
idfactor = NULL

)

raw_spct(
w.length = NULL,
counts = NA_real_,
...,
comment = NULL,
instr.desc = NA,
instr.settings = NA,
multiple.wl = 1L,
idfactor = NULL

)

cps_spct(
w.length = NULL,
cps = NA_real_,
...,
comment = NULL,
instr.desc = NA,

source_spct 343

instr.settings = NA,
multiple.wl = 1L,
idfactor = NULL

)

generic_spct(
w.length = NULL,
...,
comment = NULL,
multiple.wl = 1L,
idfactor = NULL

)

response_spct(
w.length = NULL,
s.e.response = NULL,
s.q.response = NULL,
...,
time.unit = c("second", "day", "exposure"),
response.type = c("response", "action"),
comment = NULL,
multiple.wl = 1L,
idfactor = NULL

)

filter_spct(
w.length = NULL,
Tfr = NULL,
Tpc = NULL,
Afr = NULL,
A = NULL,
...,
Tfr.type = c("total", "internal"),
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

reflector_spct(
w.length = NULL,
Rfr = NULL,
Rpc = NULL,
...,
Rfr.type = c("total", "specular"),

344 source_spct

comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

solute_spct(
w.length = NULL,
K.mole = NULL,
K.mass = NULL,
attenuation.XS = NULL,
...,
log.base = 10,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

object_spct(
w.length = NULL,
Rfr = NULL,
Tfr = NULL,
Afr = NULL,
...,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

chroma_spct(
w.length = NULL,
x,
y,
z,
...,
comment = NULL,

source_spct 345

strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

Arguments

w.length numeric vector with wavelengths in nanometres [nm].

s.e.irrad numeric vector with spectral energy irradiance in [W m−2 nm−1] or [J d−1 m−2 nm−1].

s.q.irrad numeric A vector with spectral photon irradiance in [mol s−1 m−2 nm−1] or
[mol d−1 m−2 nm−1].

... other arguments passed to tibble() such as vectors or factors to be added as
additional columns.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

bswf.used character A string indicating the BSWF used, if any, for spectral effective irra-
diance or exposure ("none" or the name of the BSWF).

comment character A string to be added as a comment attribute to the object created.

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

multiple.wl numeric Maximum number of repeated w.length entries with same value. (As
with multiple spectra stored in long from).

idfactor character Name of factor distinguishing multiple spectra when stored longitudi-
nally (required if multiple.wl > 1).

irrad.mult numeric vector with multipliers for each detector pixel expressed in units of
W m−2 nm−1 n−1 s, where n s−1 are detector counts per second.

instr.desc a list describing the spectrometer used to acquire the data.

counts numeric vector with raw counts expressed per scan.

instr.settings a list describing the settings used to acquire the data.

cps numeric vector with linearized raw counts expressed per second [n s−1]

s.e.response numeric vector with a biological, chemical or physical response expressed per
unit spectral energy irradiance [W m−2 nm−1 or J d−1 m−2 nm−1].

s.q.response numeric vector with a biological, chemical or physical response expressed per
unit spectral photon irradiance in [mol s−1 m−2 nm−1 or mol d−1 m−2 nm−1].

response.type a character string, either "response" or "action".

Tfr numeric vector with spectral transmittance as fraction of one [/1].

Tpc numeric vector with spectral transmittance as percent values

Afr numeric vector of absorptance as fraction of one [/1].

A numeric vector of absorbance values (log10-base a.u.)

Tfr.type character string indicating whether transmittance and absorptance values are
"total" or "internal" values

346 source_spct

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material.
attenuation.mode

character One of "reflection", "absorption" or "mixed".

Rfr numeric vector with spectral reflectance as fraction of one [/1].

Rpc numeric vector with spectral reflectance as percent values.

Rfr.type character A string, either "total" or "specular".

K.mole numeric vector with molar attenuation coefficient in SI units [m2 mol−1].

K.mass numeric vector with mass attenuation coefficient in SI units [m2 g−1].

attenuation.XS numeric vector with attenuation cross section values (Converted during object
construction into K.mole.)

log.base numeric Normally one of e or 10. Data are stored always on base 10 correspond-
ing to decadal absorbance as used in chemistry.

K.type character A string, either "attenuation", "absorption" or "scattering".
name, solvent.name

character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The molar mass in Dalton [Da] (Da = gmol−1).

formula character The molecular formula.

structure raster A bitmap of the structure.

ID, solvent.ID character The ID of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChem" for the authority.

x, y, z numeric colour coordinates

Details

Constructors can be used to create spectral objects from spectral quantities expressed on a single
base or unit. Some of the functions have different formal parameters accepting a quantity expressed
in different units, however, an argument can be passed to only one of these formal parameters in a
given call. The constructors object_spct() and chroma_spct() require arguments to be passed
for multiple but distinct spectral quantities.

Value

A object of class generic_spct or a class derived from it, depending on the function used. In other
words an object of a class with the same name as the constructor function.

Warning for filter_spct!

Not entering metadata when creating an object will limit the available operations! While "inter-
nal" transmittance is defined as the transmittance of the material body itself, "total" transmittance
includes the effects of surface reflectance on the amount of light transmitted. For non-diffusing
materials like glass an approximate Rfr.constant value can be used to convert "total" into "inter-
nal" transmittance values and vice versa. Use NA if not known, or not applicable, e.g., for materials
subject to internal scattering.

spct_attr2tb 347

Warning for solute_spct!

You should always set the base for logarithms to match that on which the absorbance data are
expressed. Failing to do this will result in bad data and all further computation will be wrong.
Not entering metadata when creating an object will limit the available operations! Mass should be
indicated in daltons or gmol−1. The SI unit of molar attenuation coefficient is the square metre
per mole (m2 mol1), but in practice, quantities are usually expressed in terms of M−1 cm−1 or
l mol−1 cm−1 (the latter two units are both equal to 0.1 m2 mol−1 and quantities expressed in
them need to be divided by 10 when passed as arguments to K.mole.).

See Also

setFilterProperties

setSoluteProperties

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.solute_spct(), as.source_spct()

spct_attr2tb Copy attributes into a tibble

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband.
Only attributes defined and/or set by package ’photobiology’ for objects of the corresponding class
are returned.

Usage

spct_attr2tb(
x,
which = c("-", "names", "row.names", "spct.tags", "spct.version", "comment"),
...

)

Arguments

x a generic_spct object.

which character vector Names of attributes to retrieve.

... currently ignored

Value

A tibble with the values stored in the attributes whose names were selected through the argument to
which if present in x.

348 spct_metadata

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

spct_classes Function returning a vector containing the names of spectra classes.

Description

Function returning a vector containing the names of spectra classes.

Usage

spct_classes()

Value

A character vector of class names.

Examples

spct_classes()

spct_metadata Access metadata

Description

Return metadata attributes from a single spectrum or a collection of spectra as a tibble.

Usage

spct_metadata(
x,
col.names = NULL,
idx = "spct.idx",
na.rm = is.null(col.names),
unnest = TRUE

)

spct_metadata 349

Arguments

x generic_mspct or generic_spct Any collection of spectra or spectrum.

col.names named character vector Name(s) of column(s) to create.

idx character Name of the column with the names of the members of the collection
of spectra.

na.rm logical Flag controlling deletion of columns containing only NA values.

unnest logical Flag controlling if metadata attributes that are lists of values should be
returned in a list column or in separate columns.

Details

Attributes are returned as columns in a tibble. If the argument to col.names is a named vector, with
the names of members matching the names of attributes, then the values are used as names for the
columns created. This permits setting any valid name for the new columns. If the vector passed to
col.names has no names, then the values are interpreted as the names of the attributes to add, and
also used as names for the new columns.

Some metadata values are stored in lists or data frames, these can be returned as a list columns or
the individual fields unnested into separate columns.

Value

A tibble With the metadata attributes and an index column.

See Also

add_attr2tb for more details.

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.mspct <- source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2))

spct_metadata(my.mspct)

spct_metadata(sun.spct)

spct_metadata(my.mspct, na.rm = TRUE)

spct_metadata(sun.spct, na.rm = TRUE)

spct_metadata(my.mspct, col.names = c(geocode = "geo", "instr.desc"))

spct_metadata(sun.spct, col.names = c(geocode = "geo", "instr.desc"))

350 spct_wide2long

spct_metadata(sun.spct, col.names = "where.measured")$where.measured

spct_wide2long Convert spectrum from wide to long form

Description

Convert spectrum from wide to long form

Usage

spct_wide2long(
spct,
fixed.cols = "w.length",
idfactor = "spct.idx",
rm.spct.class = FALSE,
...

)

Arguments

spct An object with spectral data.

fixed.cols character Names of variables that should be copied unchanged for each spec-
trum.

idfactor character The name of the factor to be added to the long-form object and used
to store the original name of the columns as an index to the different spectra.

rm.spct.class logical If true the returned object is a data frame.

... Currently ignored.

Details

Only objects of classes raw_spct, cps_spct, and object_spct normally contain multiple columns of
spectral data. These are supported as well as generic_spct. Is the wide spectra contain multiple
spectra in long form, the original idfactor is preserved.

Spectra that are already in long form, if passed as argument, are returned unchanged.

Because the classes defined for spectra have a well defined format, and known column names we
can define a rather simple function for this operation.

Value

An object of the same class as spct or a data.frame with derived classes removed.

spikes 351

Examples

spct_wide2long(white_led.raw_spct)
spct_wide2long(white_led.cps_spct)
spct_wide2long(Ler_leaf.spct)

spikes Spikes

Description

Function that returns a subset of an R object with observations corresponding to spikes. Spikes are
values in spectra that are unusually high compared to neighbors. They are usually individual values
or very short runs of similar "unusual" values. Spikes caused by cosmic radiation are a frequent
problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and diode arrays.

Usage

spikes(x, z.threshold, max.spike.width, na.rm, ...)

Default S3 method:
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'numeric'
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'data.frame'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
y.var.name = NULL,
var.name = y.var.name

)

S3 method for class 'generic_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = NULL,
...

)

352 spikes

S3 method for class 'source_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
spikes(x, z.threshold = 9, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'solute_spct'
spikes(x, z.threshold = 9, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'cps_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = "cps",
...

)

S3 method for class 'raw_spct'
spikes(

spikes 353

x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = "counts",
...

)

S3 method for class 'generic_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
var.name = NULL,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
spikes(
x,
z.threshold = 9,

354 spikes

max.spike.width = 8,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
var.name = "cps",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,

spikes 355

...,
var.name = "counts",
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

z.threshold numeric Modified Z values larger than z.threshold are considered to corre-
spond to spikes.

max.spike.width

integer Wider regions with high Z values are not detected as spikes.

na.rm logical indicating whether NA values should be stripped before searching for
spikes.

... ignored
var.name, y.var.name

character Name of column where to look for spikes.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

When the argument passed to x contains multiple spectra, the spikes are searched for in each spec-
trum independently of other spectra.

Value

A subset of the object passed as argument to x with rows corresponding to spikes.

Methods (by class)

• spikes(default): Default returning always NA.

• spikes(numeric): Default function usable on numeric vectors.

• spikes(data.frame): Method for "data.frame" objects.

356 split2mspct

• spikes(generic_spct): Method for "generic_spct" objects.

• spikes(source_spct): Method for "source_spct" objects.

• spikes(response_spct): Method for "response_spct" objects.

• spikes(filter_spct): Method for "filter_spct" objects.

• spikes(reflector_spct): Method for "reflector_spct" objects.

• spikes(solute_spct): Method for "solute_spct" objects.

• spikes(cps_spct): Method for "cps_spct" objects.

• spikes(raw_spct): Method for "raw_spct" objects.

• spikes(generic_mspct): Method for "generic_mspct" objects.

• spikes(source_mspct): Method for "source_mspct" objects.

• spikes(response_mspct): Method for "cps_mspct" objects.

• spikes(filter_mspct): Method for "filter_mspct" objects.

• spikes(reflector_mspct): Method for "reflector_mspct" objects.

• spikes(solute_mspct): Method for "solute_mspct" objects.

• spikes(cps_mspct): Method for "cps_mspct" objects.

• spikes(raw_mspct): Method for "raw_mspct" objects.

See Also

See the documentation for find_spikes for details of the algorithm and implementation.

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
valleys(), wls_at_target()

Examples

spikes(sun.spct)

split2mspct Convert a ’wide’ or untidy data frame into a collection of spectra

Description

Convert a data frame object into a "multi spectrum" object by constructing a an object of a multi-spct
class, converting numeric columns other than wavelength into individual spct objects.

split2mspct 357

Usage

split2mspct(
x,
member.class = NULL,
spct.data.var = NULL,
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2source_mspct(
x,
spct.data.var = "s.e.irrad",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2response_mspct(
x,
spct.data.var = "s.e.response",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2filter_mspct(
x,
spct.data.var = "Tfr",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2reflector_mspct(
x,
spct.data.var = "Rfr",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,

358 split2mspct

byrow = FALSE,
...

)

split2solute_mspct(
x,
spct.data.var = "K.mole",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2cps_mspct(
x,
spct.data.var = "cps",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2raw_mspct(
x,
spct.data.var = "count",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2calibration_mspct(
x,
spct.data.var = "irrad.mult",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

Arguments

x data frame

member.class character Class of the collection members

split_bands 359

spct.data.var character Name of the spectral data argument in the object constructor for member.class

w.length.var character Name of column containing wavelength data in nanometres

idx.var character Name of column containing data to be copied unchanged to each spct
object

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

... additional named arguments passed to the member constructor function.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), as.source_mspct(), subset2mspct()

split_bands List-of-wavebands constructor

Description

Build a list of unweighted "waveband" objects that can be used as input when calculating irradi-
ances.

Usage

split_bands(
x,
list.names = NULL,
short.names = is.null(list.names),
length.out = NULL

)

Arguments

x a numeric vector of wavelengths to split at (nm), or a range of wavelengths or a
generic_spct or a waveband.

list.names character vector with names for the component wavebands in the returned list
(in order of increasing wavelength)

short.names logical indicating whether to use short or long names for wavebands

length.out numeric giving the number of regions to split the range into (ignored if w.length
is not numeric).

Value

an un-named list of waveband objects

360 split_energy_irradiance

Note

list.names is used to assign names to the elements of the list, while the waveband objects them-
selves always retain their wb.label and wb.name as generated during their creation.

See Also

Other waveband constructors: waveband()

Examples

split_bands(c(400,500,600))
split_bands(list(c(400,500),c(550,650)))
split_bands(list(A=c(400,500),B=c(550,650)))
split_bands(c(400,500,600), short.names=FALSE)
split_bands(c(400,500,600), list.names=c("a","b"))
split_bands(c(400,700), length.out=6)
split_bands(400:700, length.out=3)
split_bands(sun.spct, length.out=10)
split_bands(waveband(c(400,700)), length.out=5)

split_energy_irradiance

Energy irradiance for split spectrum regions

Description

This function returns the energy irradiance for a series of contiguous wavebands from a radiation-
source spectrum. The returned values can be either absolute or relative to their sum.

Usage

split_energy_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

split_energy_irradiance 361

Arguments

w.length numeric vector of wavelengths (nm).

s.irrad numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1)
or (mol s-1 m-2 nm-1).

cut.w.length numeric vector of wavelengths (nm).

unit.in character string with allowed values "energy", and "photon", or its alias "quan-
tum".

scale character string indicating the scale used for the returned values ("absolute",
"relative", "percent").

check.spectrum logical indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a numeric vector of irradiances with no change in scale factor: [W m-2 nm-1] -> [W m-2] or [mol
s-1 m-2] -> [W m-2] or relative values (fraction of one) if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_photon_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

with(sun.data,
split_energy_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700)))

362 split_irradiance

split_irradiance Energy or photon irradiance for split spectrum regions

Description

This function returns the energy or photon irradiance for a series of contiguous wavebands from a
radiation spectrum. The returned values can be either absolute or relative to their sum.

Usage

split_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.out = getOption("photobiology.base.unit", default = "energy"),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric Vector of wavelengths [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

cut.w.length numeric Vector of wavelengths [nm].
unit.out, unit.in

character Allowed values "energy", and "photon", or its alias "quantum".

scale a character A string indicating the scale used for the returned values ("absolute",
"relative" or "percent").

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A numeric vector of irradiances with no change in scale factor if scale == "absolute", [W m−2]
or [mol s−1 sm−2] depending on the argument passed to unit.out or relative values (as fraction of
one if scale == "relative" or percentages if scale == "percent" of photons or energy depending
on the argument passed to unit.out.

split_photon_irradiance 363

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

Examples

with(sun.data,
split_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700),
unit.out = "photon"))

split_photon_irradiance

Photon irradiance for split spectrum regions

Description

This function returns the photon irradiance for a series of contiguous wavebands from a radiation
spectrum. The returned values can be either absolute or relative to their sum.

Usage

split_photon_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelengths (nm).

s.irrad numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1).

cut.w.length numeric vector of wavelengths (nm).

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

scale a character A string indicating the scale used for the returned values ("absolute",
"relative", "percent").

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.

364 spread

use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a numeric vector of photon irradiances with no change in scale factor: [W m-2 nm-1] -> [mol s-1
m-2], [mol s-1 m-2 nm-1] -> [mol s-1 m-2] or relative values (fraction of one based on photon units)
if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

with(sun.data,
split_photon_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700)))
with(sun.data,

split_photon_irradiance(w.length, s.e.irrad))

spread Expanse

Description

A method that returns the expanse (max(x)−min(x)) for R objects. In particular the wavelength
[nm] expanse of the wavelength range of objects of classes waveband or of class generic_spct or
derived (or the expanse of values in a numeric vector).

spread 365

Usage

spread(x, ...)

wl_expanse(x, ...)

expanse(x, ...)

Default S3 method:
expanse(x, ...)

S3 method for class 'numeric'
expanse(x, ...)

S3 method for class 'waveband'
expanse(x, ...)

S3 method for class 'generic_spct'
expanse(x, ...)

S3 method for class 'generic_mspct'
expanse(x, ..., idx = "spct.idx")

Arguments

x an R object

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A numeric value equal to max(x) - min(x). In the case of spectral objects wavelength difference
[nm]. For any other R object, according to available specialised methods of min and max.

Methods (by class)

• expanse(default): Default method for generic function

• expanse(numeric): Method for "numeric"

• expanse(waveband): Method for "waveband"

• expanse(generic_spct): Method for "generic_spct"

• expanse(generic_mspct): Method for "generic_mspct" objects.

Examples

expanse(10:20)
expanse(sun.spct)
wl_expanse(sun.spct)

366 Subset

expanse(sun.spct)

Subset Subsetting spectra

Description

Return subsets of spectra stored in class generic_spct or derived from it.

Usage

S3 method for class 'generic_spct'
subset(x, subset, select, drop = FALSE, ...)

Arguments

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

select expression, indicating columns to select from a spectrum.

drop passed on to [indexing operator.

... further arguments to be passed to or from other methods.

Value

An object similar to x containing just the selected rows and columns. Depending on the columns
remaining after subsetting the class of the object will be simplified to the most derived parent class.

Note

This method is copied from base::subset.data.frame() but ensures that all metadata stored in
attributes of spectral objects are copied to the returned value.

Examples

subset(sun.spct, w.length > 400)

subset2mspct 367

subset2mspct Convert ’long’ or tidy spectral data into a collection of spectra

Description

Convert a data frame object or spectral object into a collection of spectra object of the matching
class. For data frames converting numeric columns other than wavelength into individual spct
objects. For collection of spectra objects, subset/expand long-form members into multiple members
of the same collection.

Usage

subset2mspct(
x,
member.class = NULL,
idx.var = getIdFactor(x),
drop.idx = TRUE,
ncol = 1,
byrow = FALSE,
...

)

Arguments

x a generic_spct object or of a derived class, or a data frame, or a generic_mspct
object or of a derived class.

member.class character string.

idx.var character Name of column containing data to be copied unchanged to each spct
object.

drop.idx logical Flag indicating whether to drop or keep idx.var in the collection mem-
bers.

ncol integer Number of ’virtual’ columns in data.

byrow logical If ncol > 1 how to read in the data.

... additional named arguments passed to the member constructor function.

Value

A collection of spectral objects, each with attributes set if x is a spectral object in long form with
metadata attributes. If this object was created by row binding with ’photobiology’ 0.9.14 or later
then all metadata for each individual spectrum will be preserved, except for unique comments which
are merged.

Note

A non-null value for member.class is mandatory only when x is a data frame.

368 subt_spectra

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct()

subt_spectra Subtract two spectra

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added. This is ’parallel’
operation between two spectra.

Usage

subt_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

summary.generic_spct 369

Value

a data frame with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
zero.data <- with(sun.data, subt_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(zero.data)
tail(zero.data)

summary.generic_spct Summary of one or more spectra

Description

Methods of generic function summary for objects of spectral classes and of classes for collections
of spectra.

Usage

S3 method for class 'generic_spct'
summary(
object,
maxsum = 7,
digits = max(3, getOption("digits") - 3),
...,
expand = "none"

)

S3 method for class 'generic_mspct'
summary(
object,
maxsum = 7,
digits = max(3, getOption("digits") - 3),

370 summary.generic_spct

idx = "spct.idx",
which.metadata = NULL,
expand = "none",
...

)

Arguments

object An object of one of the spectral classes for which a summary is desired.

maxsum integer Indicates how many levels should be shown for factors.

digits integer Used for number formatting with format().

... additional arguments affecting the summary produced, ignored in current ver-
sion.

expand character One of "none", "collection", "each" or "auto" indicating if mul-
tiple spectra in long form should be summarized as a collection or individually.

idx character Name of the column with the names of the members of the collection
of spectra.

which.metadata character vector Names of attributes to retrieve, or "none" or "all". Obeyed if
expand = FALSE, its default.

Details

Objects are summarized as is, ignoring the current settings of R options photobiology.radiation.unit
and photobiology.filter.qty. Unlike R’s summary, these methods can optionally summarize
each spectrum stored in long form returning a list of summaries. Although this is frequently the
most informative approach, the default remains similar to summary() method from R: to summa-
rize object as a whole. Alternatively, multiple spectra stored in long form, can optionally be
summarized also as a collection of spectra. Passing "auto" in the call, is equivalent to passing
"each" or "collection" depending on the number of spectra contained in the object.

Value

A summary object matching the class of object, or a list of such objects or a summary object
for a matching collection of spectra. Metadata stored in attributes are copied to identical attributes
in the returned summary objects except when object is a collection of spectra or if expand =
"collection" is passed in the call. In this two cases, a condensed summary is returned as a data
frame and attributes from each member can be copied to variables in it.

Functions

• summary(generic_mspct):

See Also

print.summary_generic_spct

summary_spct_classes 371

Examples

summary(sun.spct)
class(summary(sun.spct))

summary(two_filters.spct)
class(summary(two_filters.spct))

summary(sun_evening.spct)
summary(two_filters.spct, expand = "none")
summary(two_filters.spct, expand = "each")
summary(two_filters.spct, expand = "collection")
summary(two_filters.spct, expand = "auto") # <= 4 spectra
summary(sun_evening.spct, expand = "auto") # > 4 spectra

where_measured(sun.spct)
where_measured(summary(sun.spct))
what_measured(summary(two_filters.spct))
what_measured(summary(two_filters.spct, expand = "each")[[1]])

summary(sun_evening.mspct)
summary(sun_evening.mspct, which.metadata = "when.measured")
summary(two_filters.mspct, which.metadata = "what.measured")
summary(two_filters.mspct, expand = "each")

summary_spct_classes Function that returns a vector containing the names of spectral sum-
mary classes.

Description

Function that returns a vector containing the names of spectral summary classes.

Usage

summary_spct_classes()

Value

A character vector of class names.

372 sum_spectra

sum_spectra Add two spectra

Description

Merge wavelength vectors of two spectra, and compute the missing spectral values by interpolation
within each spectrum. After this, the spectral values at each wavelength are added. This is a
’parallel’ operation between two spectra.

Usage

sum_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2 = NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a data.frame with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

sun.spct 373

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
twice.sun.data <- with(sun.data, sum_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(twice.sun.data)
tail(twice.sun.data)

sun.spct Solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy)
irradiance and spectral photon irradiance. Values simulated for 22 June 2010, near midday, at
Helsinki, under partly cloudy conditions. The variables are as follows:

Usage

sun.spct

sun.data

Format

A source_spct object and a data.frame, each with 511 rows and 3 variables

An object of class data.frame with 508 rows and 3 columns.

Details

• w.length (nm), range 293 to 800 nm.

• s.e.irrad (W m-2 nm-1)

• s.q.irrad (mol m-2 nm-1)

Note

Package ’photobiologySun’ contains data sets for the daylight spectrum under different conditions
in and outside vegetation, stored in objects of these same classes, ready to be used with package
’photobiology’.

374 sun_angles

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of So-
lar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and
Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

sun.spct
summary(sun.spct)

sun_angles Solar angles

Description

Function sun_angles() returns the solar angles and Sun to Earth relative distance for given times
and locations using a very precise algorithm. Convenience functions sun_azimuth(), sun_elevation(),
sun_zenith_angle() and distance_to_sun() are wrappers on sun_angles() that return indi-
vidual vectors.

Usage

sun_angles(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_angles_fast(time, tz, geocode, use.refraction)

sun_elevation(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

sun_angles 375

)

sun_zenith_angle(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_azimuth(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

distance_to_sun(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

Arguments

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

use.refraction logical Flag indicating whether to correct for fraction in the atmosphere.

Details

This function is an implementation of Meeus equations as used in NOAAs on-line web calculator,
which are precise and valid for a very broad range of dates (years -1000 to 3000 at least). The
apparent solar elevations near sunrise and sunset are affected by refraction in the atmosphere, which
does in turn depend on weather conditions. The effect of refraction on the apparent position of the
sun is only an estimate based on "typical" conditions for the atmosphere. The computation is not
defined for latitudes 90 and -90 degrees, i.e. exactly at the poles. The function is vectorized and in
particular passing a vector of times for a single geocode enhances performance very much as the
equation of time, the most time consuming step, is computed only once.

For improved performance, if more than one angle is needed it is preferable to directly call sun_angles
instead of the wrapper functions as this avoids the unnecesary recalculation.

376 sun_angles

Value

A data.frame with variables time (in same TZ as input), TZ, solartime, longitude, latitude,
address, azimuth, elevation, declination, eq.of.time, hour.angle, and distance. If a data
frame with multiple rows is passed to geocode and a vector of times longer than one is passed to
time, sun position for all combinations of locations and times are returned by sun_angles. Angles
are expressed in degrees, solartime is a vector of class "solar.time", distance is expressed in
relative sun units.

Important!

Given an instant in time and a time zone, the date is computed from these, and may differ by one day
to that at the location pointed by geocode at the same instant in time, unless the argument passed
to tz matches the time zone at this location.

Note

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all
the same, the function signatures and which values are returned differ. In particular, the present
implementation splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates.

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

Other astronomy related functions: day_night(), format.solar_time()

Examples

library(lubridate)
sun_angles()
sun_azimuth()
sun_elevation()
sun_zenith_angle()
sun_angles(ymd_hms("2014-09-23 12:00:00"))
sun_angles(ymd_hms("2014-09-23 12:00:00"),

geocode = data.frame(lat=60, lon=0))
sun_angles(ymd_hms("2014-09-23 12:00:00") + minutes((0:6) * 10))

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

sun_daily.spct 377

sun_daily.spct Daily solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy)
irradiance. Values simulated for 2 June 2012, at Helsinki, under clear sky conditions. The variables
are as follows:

Usage

sun_daily.spct

sun_daily.data

sun.daily.spct

sun.daily.data

Format

A source_spct object and a data.frame, each with 511 rows and 3 variables

An object of class tbl_df (inherits from tbl, data.frame) with 511 rows and 3 columns.

An object of class source_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
522 rows and 3 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 511 rows and 3 columns.

Details

• w.length (nm), range 290 to 800 nm.

• s.e.irrad (J d-1 m-2 nm-1)

• s.q.irrad (mol d-1 m-2 nm-1)

Deprecation!

Objects sun.daily.spct and sun.daily.data have been renamed into sun_daily.spct and
sun_daily.data, for consistency with other data sets in the package. Please, use the new names
for new code.

Note

The simulations are based on libRadTran using hourly mean global radiation measurements to es-
timate cloud cover. The simulations were for each hour and the results integrated for the whole
day.

378 sun_evening.spct

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of So-
lar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and
Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_evening.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

sun.daily.spct
summary(sun.daily.spct)

sun_evening.spct Time series of solar spectral irradiance (measured)

Description

Two data objects containing containing the same time series of five spectra. Values measured in
Viikki, Helsinki, under nearly clear sky in a summer evening.

Usage

sun_evening.spct

sun_evening.mspct

Format

A source_spct object and a source_mspct object.

An object of class source_mspct (inherits from generic_mspct, list) with 5 rows and 1 columns.

Details

The variables are as follows:

• w.length (nm), range 290 to 1000 nm.

• s.e.irrad (J d-1 m-2 nm-1)

• s.q.irrad (mol d-1 m-2 nm-1)

s_e_irrad2rgb 379

Author(s)

Pedro J. Aphalo (data)

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, two_filters.spct, water.spct, white_led.source_spct

Examples

summary(sun_evening.mspct)
colnames(sun_evening.spct)

s_e_irrad2rgb Spectral irradiance to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions (CMF) or chromaticity
coordinates (CC). A CMF takes into account luminous sensitivity, while a CC only the color hue.
This function, in contrast to that in package pavo does not normalize the values to equal luminosity,
so using a CMF as input gives the expected result. Another difference is that it allows the user to
choose the chromaticity data to be used. The data used by default is different, and it corresponds to
the whole range of CIE standard, rather than the reduced range 400 nm to 700 nm. The wavelength
limits are not hard coded, so the function could be used to simulate vision in other organisms as
long as pseudo CMF or CC data are available for the simulation.

Usage

s_e_irrad2rgb(
w.length,
s.e.irrad,
sens = photobiology::ciexyzCMF2.spct,
color.name = NULL,
check = TRUE

)

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral irradiance values.

sens a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF
definition (default is the proposed human CMF according to CIE 2006.).

color.name character string for naming the rgb color definition.

check logical indicating whether to check or not spectral data.

380 s_mean

Value

A color defined using rgb. The numeric values of the RGB components can be obtained using
function col2rgb.

Note

Very heavily modified from Chad Eliason’s <cme16@zips.uakron.edu> spec2rgb function in pack-
age Pavo.

References

CIE(1932). Commission Internationale de l’Eclairage Proceedings, 1931. Cambridge: Cambridge
University Press.

Color matching functions obtained from Colour and Vision Research Laboratory online data repos-
itory at http://www.cvrl.org/.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

my.color <-
with(sun.data,

s_e_irrad2rgb(w.length, s.e.irrad, color.name = "sunWhite"))
col2rgb(my.color)

s_mean Mean from collection of spectra

Description

Method to compute the "parallel" mean of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

http://www.cvrl.org/

s_mean 381

Usage

s_mean(x, trim, na.rm, ...)

Default S3 method:
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object.

trim numeric The fraction (0 to 0.5) of observations to be trimmed from each end of
x before the mean is computed. Values of trim outside that range are taken as
the nearest endpoint.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean at each wavelength across a group of spectra stored in
an object of one of the classes defined in package ’photobiolgy’. Trimming of extreme values is
possible (trimmed mean) and omission of NAs is done separately at each wavelength. Interpolation
is not applied, so all spectra in x must share the same set of wavelengths. An error is triggered if
this condition is nor fulfilled.

382 s_mean_se

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean(default):

• s_mean(generic_spct):

• s_mean(source_mspct):

• s_mean(response_mspct):

• s_mean(filter_mspct):

• s_mean(reflector_mspct):

• s_mean(calibration_mspct):

• s_mean(cps_mspct):

• s_mean(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method used for the computations.

Examples

s_mean(sun_evening.mspct)

s_mean_se Mean and standard error from collection of spectra

Description

Method to compute the "parallel" mean and the SEM. The spectral values are summarised across
members of a collection of spectra or of a spectral object containing multiple spectra in long form.

s_mean_se 383

Usage

s_mean_se(x, na.rm, mult, ...)

Default S3 method:
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'generic_spct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'filter_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'source_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'response_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'reflector_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'calibration_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'cps_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'raw_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

Arguments

x An R object Currently this package defines methods for collections of spectral
objects.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

mult numeric number of multiples of standard error.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean and SEM at each wavelength across a group of spectra
stored in an object of one of the classes defined in package ’photobiology’. Omission of NAs is
done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the
same set of wavelengths. An error is triggered if this condition is nor fulfilled. The value passed as
argument to ‘mult‘

384 s_mean_se_band

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean_se(default):

• s_mean_se(generic_spct):

• s_mean_se(filter_mspct):

• s_mean_se(source_mspct):

• s_mean_se(response_mspct):

• s_mean_se(reflector_mspct):

• s_mean_se(calibration_mspct):

• s_mean_se(cps_mspct):

• s_mean_se(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method to compute the mean and se for the method used to compute the
standard error of the mean.

Examples

s_mean_se(sun_evening.mspct)

s_mean_se_band Mean plus and minus standard error from collection of spectra

Description

Method to compute the "parallel" mean and limits based on SEM. The spectral values are sum-
marised across members of a collection of spectra or of a spectral object containing multiple spectra
in long form.

s_mean_se_band 385

Usage

s_mean_se_band(x, na.rm, mult, ...)

Default S3 method:
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'generic_spct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'filter_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'source_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'response_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'reflector_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'calibration_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'cps_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'raw_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

Arguments

x An R object.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

mult numeric number of multiples of standard error.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean and limits based on SEM at each wavelength across
a group of spectra stored in an object of one of the classes defined in package ’photobiology’.
Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra
in x must share the same set of wavelengths. An error is triggered if this condition is nor fulfilled.
The value passed as argument to ‘mult‘ can be used to estimate a confidence interval for each mean
value.

386 s_median

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean_se_band(default):

• s_mean_se_band(generic_spct):

• s_mean_se_band(filter_mspct):

• s_mean_se_band(source_mspct):

• s_mean_se_band(response_mspct):

• s_mean_se_band(reflector_mspct):

• s_mean_se_band(calibration_mspct):

• s_mean_se_band(cps_mspct):

• s_mean_se_band(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method used for the computations.

Examples

s_mean_se_band(sun_evening.mspct)

s_median Median of a collection of spectra

Description

Method to compute the "parallel" median of values across members of a collection of spectra or of
a spectral object containing multiple spectra in long form.

s_median 387

Usage

s_median(x, na.rm, ...)

Default S3 method:
s_median(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_median(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the median at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

388 s_prod

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_median(default):

• s_median(generic_spct):

• s_median(source_mspct):

• s_median(response_mspct):

• s_median(filter_mspct):

• s_median(reflector_mspct):

• s_median(calibration_mspct):

• s_median(cps_mspct):

• s_median(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See median for the median() method used for the computations.

Examples

s_median(sun_evening.mspct)

s_prod Product from collection of spectra

Description

Method to compute the "parallel" product of values across members of a collection of spectra or of
a spectral object containing multiple spectra in long form.

s_prod 389

Usage

s_prod(x, na.rm, ...)

Default S3 method:
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_prod(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the product at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

390 s_range

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_prod(default):

• s_prod(generic_spct):

• s_prod(source_mspct):

• s_prod(response_mspct):

• s_prod(filter_mspct):

• s_prod(reflector_mspct):

• s_prod(calibration_mspct):

• s_prod(cps_mspct):

• s_prod(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

The product operation is meaningful only for certain physical quantities or bases of expression.

See Also

See prod for the prod() method used for the computations.

Examples

s_prod(two_filters.mspct)

s_range Range of a collection of spectra

Description

Method to compute the "parallel" range of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

s_range 391

Usage

s_range(x, na.rm, ...)

Default S3 method:
s_range(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_range(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the range at each wavelength across a group of spectra stored in an
object of one of the classes defined in package ’photobiology’. Omission of NAs is done separately
at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of
wavelengths. An error is triggered if this condition is nor fulfilled.

392 s_sd

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_range(default):

• s_range(generic_spct):

• s_range(filter_mspct):

• s_range(source_mspct):

• s_range(response_mspct):

• s_range(reflector_mspct):

• s_range(calibration_mspct):

• s_range(cps_mspct):

• s_range(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See Extremes details on the min() and max() methods used for the computations.

Examples

s_range(sun_evening.mspct)

s_sd Standard Deviation of a collection of spectra

Description

Method to compute the "parallel" standard deviation of values across members of a collection of
spectra or of a spectral object containing multiple spectra in long form.

s_sd 393

Usage

s_sd(x, na.rm, ...)

Default S3 method:
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_sd(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the standard deviation at each wavelength across a group of spectra
stored in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

394 s_se

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_sd(default):

• s_sd(generic_spct):

• s_sd(filter_mspct):

• s_sd(source_mspct):

• s_sd(response_mspct):

• s_sd(reflector_mspct):

• s_sd(calibration_mspct):

• s_sd(cps_mspct):

• s_sd(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See sd for details about sd() methods for other classes.

Examples

s_sd(sun_evening.mspct)

s_se Standard Error of a collection of spectra

Description

Method to compute the "parallel" standard error of the mean across members of a collection of
spectra or of a spectral object containing multiple spectra in long form.

s_se 395

Usage

s_se(x, na.rm, ...)

Default S3 method:
s_se(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_se(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the standard error of the mean at each wavelength across a group
of spectra stored in an object of one of the classes defined in package ’photobiology’. Omission
of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must
share the same set of wavelengths. An error is triggered if this condition is nor fulfilled.

396 s_sum

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_se(default):

• s_se(generic_spct):

• s_se(source_mspct):

• s_se(response_mspct):

• s_se(filter_mspct):

• s_se(reflector_mspct):

• s_se(calibration_mspct):

• s_se(cps_mspct):

• s_se(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

Examples

s_se(sun_evening.mspct)

s_sum Sum from collection of spectra

Description

Method to compute the "parallel" sum of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

Usage

s_sum(x, na.rm, ...)

Default S3 method:
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'

s_sum 397

s_sum(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_sum(x, na.rm = FALSE, ...)

Arguments

x An R object.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the sum at each wavelength across a group of spectra stored in an
object of one of the classes defined in package ’photobiology’. Omission of NAs is done separately
at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of
wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_sum(default):

• s_sum(generic_spct):

• s_sum(filter_mspct):

398 s_var

• s_sum(source_mspct):

• s_sum(response_mspct):

• s_sum(reflector_mspct):

• s_sum(calibration_mspct):

• s_sum(cps_mspct):

• s_sum(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

The sum operation is meaningful only for certain physical quantities or bases of expression.

See Also

See sum for the sum() method used for the computations.

Examples

s_sum(sun_evening.mspct)

s_var Variance of a collection of spectra

Description

Method to compute the "parallel" variance of values across members of a collections of spectra or
of a spectral object containing multiple spectra in long form.

Usage

s_var(x, na.rm, ...)

Default S3 method:
s_var(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'

s_var 399

s_var(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_var(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the variance at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_var(default):

• s_var(generic_spct):

• s_var(filter_mspct):

• s_var(source_mspct):

• s_var(response_mspct):

• s_var(reflector_mspct):

• s_var(calibration_mspct):

400 T2A

• s_var(cps_mspct):

• s_var(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See cor for details about var(), which is used for the computations.

Examples

s_var(sun_evening.mspct)

T2A Convert transmittance into absorbance.

Description

Function that converts transmittance (fraction) into log10-based absorbance (a.u.).

Usage

T2A(x, action, byref, clean, ...)

Default S3 method:
T2A(x, action = NULL, byref = FALSE, ...)

S3 method for class 'numeric'
T2A(x, action = NULL, byref = FALSE, clean = TRUE, ...)

S3 method for class 'filter_spct'
T2A(x, action = "add", byref = FALSE, clean = TRUE, strict.A = FALSE, ...)

S3 method for class 'filter_mspct'
T2A(
x,
action = "add",
byref = FALSE,
clean = TRUE,
strict.A = TRUE,
...,
.parallel = FALSE,

T2A 401

.paropts = NULL
)

Arguments

x an R object.

action character Allowed values "replace" and "add".

byref logical indicating if new object will be created by reference or by copy of x.

clean logical replace off-boundary values before conversion

... not used in current version

strict.A logical Attempt to compute a true internal absorbance even if "total" transmit-
tance is stored in x.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Absorbance, A, is frequently used in chemistry as it is linearly related to the concentration of a
solute dissolved in a solvent.

A = − log10 τ

where, A absorbance and τ is internal transmittance. By default, if total transmittance, T , is stored
in x, the returned value computed as

A = − log10 T

is not strictly absorbance. In this case and in cases when the measured light attenuation is the result
of scattering, or when part of measured light is re-emitted after absorption the use of attenuance is
the IUPAC-recommended name for this quantity.

If strict.A = TRUE is passed in the call and total transmittance, T , and total reflectance, ρ, are both
available, absorbance is computed as:

A = − log10(T − ρ)/(1− ρ)

where ρ can be either spectral total reflectance stored in x as data or a single approximate Rfr.constant
value stored as part of the metadata.

Value

A copy of x with a column A added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

402 T2Afr

Methods (by class)

• T2A(default): Default method for generic function

• T2A(numeric): Method for numeric vectors

• T2A(filter_spct): Method for filter spectra

• T2A(filter_mspct): Method for collections of filter spectra

Note

The default A.strict = FALSE ensures indentical behaviour as in ’photobiology’ (<= 0.11.0).

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

T2Afr Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction)
is available, it also allows conversions between internal and total absorptance.

Usage

T2Afr(x, action, byref, clean, ...)

Default S3 method:
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, ...)

S3 method for class 'numeric'
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)

S3 method for class 'filter_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'object_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'filter_mspct'
T2Afr(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,

T2Afr 403

.parallel = FALSE,

.paropts = NULL
)

S3 method for class 'object_mspct'
T2Afr(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object.

action character Allowed values "replace" and "add".

byref logical indicating if new object will be created by reference or by copy of x.

clean logical replace off-boundary values before conversion.

... not used in current version.

Rfr numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is
internal reflectance,

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Absorptance, internal transmittance and total reflectance when expressed as fractions, add up to
one:

1 = α+ τ + ρ

where, α is absorptance, τ is internal transmittance and ρ is total reflectance. If any two of these
quantities are known, the third one can be computed from them.

On the other hand:

1 = α′+ T

where, α′ = α + ρ, measured together. In this case, there is not enough information available to
compute α.

404 tag

Thus, method T2Afr() computes either α or α′, depending on whether τ or T are contained in the
argument passed to x, but neither of them when only τ is known. To know which quantity has been
computed, use getTfrType() to query whether the computations were based on τ or T .

The R names used are: Tfr for τ and T are Tfr, Afr for α and α′, and Rfr for rho. The distinction
between τ and T and between α and α′ is made based on metadata attributes.

Value

A copy of x with a column Afr added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the redundant columns are removed, even when column Afr was
present in the argument passed to x.

Methods (by class)

• T2Afr(default): Default method for generic function

• T2Afr(numeric): Default method for generic function

• T2Afr(filter_spct): Method for filter spectra

• T2Afr(object_spct): Method for object spectra

• T2Afr(filter_mspct): Method for collections of filter spectra

• T2Afr(object_mspct): Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

Examples

T2Afr(Ler_leaf.spct)

tag Tag a spectrum

Description

Spectra are tagged by adding variables and attributes containing color definitions, labels, and a
factor following the wavebands given in w.band. This methods are most useful for plotting realistic
computed colors from spectral data.

tag 405

Usage

tag(x, ...)

Default S3 method:
tag(x, ...)

S3 method for class 'generic_spct'
tag(
x,
w.band = NULL,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
byref = FALSE,
...

)

S3 method for class 'generic_mspct'
tag(
x,
w.band = NULL,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
byref = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object.

... ignored (possibly used by derived methods).

w.band waveband or list of waveband objects. The waveband(s) determine the region(s)
of the spectrum that are tagged

wb.trim logical Flag telling if wavebands crossing spectral data boundaries are trimmed
or ignored

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

short.names logical Flag indicating whether to use short or long names for wavebands

chroma.type character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

406 Tfr_fraction

byref logical Flag indicating if new object will be created by reference or by copy of x

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x expanded with additional columns with color-related information.

Methods (by class)

• tag(default): Default method for generic

• tag(generic_spct): Tag one of generic_spct, and derived classes including source_spct,
filter_spct, reflector_spct, object_spct, and response_spct.

• tag(generic_mspct): Tag one of generic_mspct, and derived classes including source_mspct,
filter_mspct, reflector_mspct, object_mspct, and response_mspct.

Note

NULL as w.band argument does not add any new tags, instead it removes existing tags if present. NA,
the default, as w.band argument removes existing waveband tags if present and sets the wl.color
variable. If a waveband object or a list of wavebands is supplied as argument then tagging is based
on them, and wl.color is also set.

See Also

Other tagging and related functions: is_tagged(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

Examples

tag(sun.spct)
tag(sun.spct, list(A = waveband(c(300,3005))))

Tfr_fraction transmittance:transmittance fraction

Description

This function returns the transmittance fraction for a given pair of wavebands of a filter spectrum.

Tfr_fraction 407

Usage

Tfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'filter_spct'
Tfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,

408 Tfr_fraction

quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "filter_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral transmittance, one computed for each waveband.

Tfr_fraction 409

Tfrλ(s, wbnum)

Tfrλ(s, wbdenom) + Tfrλ(s, wbnum)

If the argument is set to quantity = "total" the fraction is based on two integrated transmit-
tance, one computed for each waveband.

Tfr(s, wbnum)

Tfr(s, wbdenom) + Tfr(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity = "total" and
"[Tfr(wl):Tfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Tfr_fraction(default): Default for generic function

• Tfr_fraction(filter_spct): Method for filter_spct objects

• Tfr_fraction(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other transmittance ratio functions: Tfr_normdiff(), Tfr_ratio()

410 Tfr_normdiff

Examples

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Tfr_normdiff transmittance:transmittance normalised difference

Description

This function returns the transmittance normalized difference index for a given pair of wavebands
of a filter spectrum.

Usage

Tfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Tfr_normdiff 411

S3 method for class 'filter_spct'
Tfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "filter_spct".
w.band.plus, w.band.minus

waveband object(s) or a list(s) of waveband objects used to compute the additive
and subtractive transmittance terms of the normalized difference index.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

412 Tfr_normdiff

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral photon transmittances, one computed for each waveband.

Tfrλ(s, wbplus)− Tfrλ(s, wbminus)

Tfrλ(s, wbplus) + Tfrλ(s, wbminus)

If the argument is set to quantity = "total" the fraction is based on two photon transmittances,
one computed for each waveband.

Tfr(s, wbplus)− Tfr(s, wbminus)

Tfr(s, wbplus) + Tfr(s, wbminus)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity = "total" and
"[Tfr(wl):Tfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Tfr_ratio 413

Methods (by class)

• Tfr_normdiff(default): Default for generic function

• Tfr_normdiff(filter_spct): Method for filter_spct objects

• Tfr_normdiff(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult =T RUE. However, be aware
that you are responsible for ensuring that the wavelengths are the same in each call, as the only test
done is for the length of the w.length vector.

See Also

normalized_diff_ind, accepts different summary functions.

Other transmittance ratio functions: Tfr_fraction(), Tfr_ratio()

Examples

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Tfr_ratio transmittance:transmittance ratio

Description

This function returns the transmittance ratio for a given pair of wavebands of a filter spectrum.

Usage

Tfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,

414 Tfr_ratio

wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'filter_spct'
Tfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",

Tfr_ratio 415

.parallel = FALSE,

.paropts = NULL
)

Arguments

spct an object of class "filter_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral transmittance, one computed for each waveband.

Tfrλ(s, wbnum)

Tfrλ(s, wbdenom))

If the argument is set to quantity = "total" the ratio is based on two integrated transmittance,
one computed for each waveband.

416 Tfr_ratio

Tfr(s, wbnum)

Tfr(s, wbdenom)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity = "total" and
"[Tfr(wl):Tfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Tfr_ratio(default): Default for generic function

• Tfr_ratio(filter_spct): Method for filter_spct objects

• Tfr_ratio(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other transmittance ratio functions: Tfr_fraction(), Tfr_normdiff()

Examples

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),

thin_wl 417

waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

thin_wl Thin the density of wavelength values

Description

Increase the wavelength step in stored spectral data in featureless regions to save storage space.

Usage

thin_wl(x, ...)

Default S3 method:
thin_wl(x, ...)

S3 method for class 'generic_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'source_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

418 thin_wl

S3 method for class 'filter_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'solute_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'raw_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'cps_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'object_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'chroma_spct'

thin_wl 419

thin_wl(x, ...)

S3 method for class 'calibration_spct'
thin_wl(x, ...)

S3 method for class 'generic_mspct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'chroma_mspct'
thin_wl(x, ...)

S3 method for class 'calibration_mspct'
thin_wl(x, ...)

Arguments

x An R object

... additional named arguments passed down to f.

max.wl.step numeric. Largest allowed wavelength difference between adjacent spectral val-
ues in nanometres (nm).

max.slope.delta

numeric in 0 to 1. Largest allowed change in relative slope of the spectral quan-
tity per nm between adjacent pairs of values.

span integer A peak (or valley) is defined as an element in a sequence which is greater
(or smaller) than all other elements within a window of width span centred at
that element. Use NULL for the global peak.

col.names character. Name of the column of x containing the spectral data to check against
max.slope.delta. Currently only one column supported.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

qty.out character Allowed values "transmittance", and "absorbance".

Details

The algorithm used for spectra is "naive" in an effort to keep it efficient. It works by iteratively
attempting to delete every other observation along wavelengths, based on the criteria for maximum
wavelength step and maximum relative step in the spectral variable between adjacent data values.

Value

An object of the same class as x but with a reduced density of wavelength values in those regions
were slope is shallow and featureless.

Methods (by class)

• thin_wl(default): Default for generic function

• thin_wl(generic_spct):

• thin_wl(source_spct):

420 thin_wl

• thin_wl(response_spct):

• thin_wl(filter_spct):

• thin_wl(reflector_spct):

• thin_wl(solute_spct):

• thin_wl(raw_spct):

• thin_wl(cps_spct):

• thin_wl(object_spct):

• thin_wl(chroma_spct):

• thin_wl(calibration_spct):

• thin_wl(generic_mspct):

• thin_wl(chroma_mspct):

• thin_wl(calibration_mspct):

Note

The value of max.slope.delta is expressed as relative change in the slope of spectral variable per
nanometre. This means that values between 0.0005 and 0.005 tend to work reasonably well. The
best value will depend on the wavelength step of the input and noise in data. A moderate smoothing
before thinning can sometimes help in the case of noisy data.

The amount of thinning is almost always less than the value of criteria passed as argument as it
is based on existing wavelength values. For example if we start with a spectrum with a uniform
wavelength step of 1 nm, possible steps in the thinned spectrum are 2, 4, 8, 16, 32, etc. nm. The
algorithm, does work with any step sizes, regular or variable in the input. Thinning is most effective
for spectra with large "featureless" regions as the algorithm attempts not to discard information,
contrary to smoothing or interpolation.

Local peaks and valleys are always preserved, using by default a span of 21 to search for them. See
find_peaks.

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), uncollect2spct()

Examples

nrow(yellow_gel.spct)
wl_stepsize(yellow_gel.spct)
thinned.spct <- thin_wl(yellow_gel.spct)
nrow(thinned.spct)
wl_stepsize(thinned.spct)

times-.generic_spct 421

times-.generic_spct Arithmetic Operators

Description

Multiplication operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 * e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
slash-.generic_spct

transmittance Transmittance

Description

Summary transmittance for supplied wavebands from filter or object spectrum.

Usage

transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",

422 transmittance

...
)

S3 method for class 'object_spct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx"

)

S3 method for class 'object_mspct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

transmittance 423

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... ignored (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• transmittance(default): Default method

• transmittance(filter_spct): Method for filter spectra

• transmittance(object_spct): Method for object spectra

• transmittance(filter_mspct): Calculates transmittance from a filter_mspct

• transmittance(object_mspct): Calculates transmittance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

424 Trig

Examples

transmittance(polyester.spct, waveband(c(280, 315)))
transmittance(polyester.spct, waveband(c(315, 400)))
transmittance(polyester.spct, waveband(c(400, 700)))

Trig Trigonometric Functions

Description

Trigonometric functions for object of generic_spct and derived classes. \ The functions are ap-
plied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function
is applied depends on the class of x and the current value of output options.

Usage

S3 method for class 'generic_spct'
cos(x)

S3 method for class 'generic_spct'
sin(x)

S3 method for class 'generic_spct'
tan(x)

S3 method for class 'generic_spct'
acos(x)

S3 method for class 'generic_spct'
asin(x)

S3 method for class 'generic_spct'
atan(x)

Arguments

x an object of class "generic_spct" or a derived class.

trimInstrDesc 425

trimInstrDesc Trim the "instr.desc" attribute

Description

Function to trim the "instr.desc" attribute of an existing generic_spct object, discarding all fields ex-
cept for ‘spectrometer.name‘, ‘spectrometer.sn‘, ‘bench.grating‘, ‘bench.slit‘, and calibration name.

Usage

trimInstrDesc(
x,
fields = c("time", "spectrometer.name", "spectrometer.sn", "bench.grating",
"bench.slit", "entrance.optics")

)

Arguments

x a generic_spct object

fields a character vector with the names of the fields to keep, or if first member is
‘"-"‘, the names of fields to delete; "*" as first member of the vector makes the
function a no-op, leaving the spectrum object unaltered.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrSettings()

426 trimInstrSettings

trimInstrSettings Trim the "instr.settings" attribute

Description

Function to trim the "instr.settings" attribute of an existing generic_spct object, by discarding some
fields.

Usage

trimInstrSettings(x, fields = "*")

Arguments

x a generic_spct object

fields a character vector with the names of the fields to keep, or if first member is
‘"-"‘, the names of fields to delete; "*" as first member of the vector makes the
function a no-op, leaving the spectrum object unaltered.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc()

trim_spct 427

trim_spct Trim (or expand) head and/or tail of a spectrum

Description

Trim head and tail of a spectrum based on wavelength limits, interpolating the values at the bound-
aries of the range. Trimming is needed for example to remove short wavelength noise when the
measured spectrum extends beyond the known emission spectrum of the measured light source.
Occasionally one may want also to expand the wavelength range.

Usage

trim_spct(
spct,
range = NULL,
low.limit = NULL,
high.limit = NULL,
use.hinges = TRUE,
fill = NULL,
byref = FALSE,
verbose = getOption("photobiology.verbose")

)

trim_mspct(
mspct,
range = NULL,
low.limit = NULL,
high.limit = NULL,
use.hinges = TRUE,
fill = NULL,
byref = FALSE,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

trim2overlap(
mspct,
use.hinges = TRUE,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

extend2extremes(
mspct,
use.hinges = TRUE,

428 trim_spct

fill = NA,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "generic_spct".

range a numeric vector of length two, or any other object for which method range()
will return a numeric vector of length two.

low.limit shortest wavelength to be kept (defaults to shortest w.length value).

high.limit longest wavelength to be kept (defaults to longest w.length value).

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill==NULL then tails are deleted, otherwise tails or s.irrad are filled with the
value of fill.

byref logical indicating if new object will be created by reference or by copy of spct.

verbose logical.

mspct an object of class "generic_mspct"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

a spectrum object or a collection of spectral objects of the same class as x with wavelength heads
and tails clipped or extended.

Note

When expanding a spectrum, if fill==NULL, then expansion is not performed. Range can be "wave-
band" object, a numeric vector or a list of numeric vectors, or any other user-defined or built-in
object for which range() returns a numeric vector of length two, that can be interpreted as wave-
lengths expressed in nm.

See Also

Other trim functions: clip_wl(), trim_waveband(), trim_wl()

trim_tails 429

Examples

trim_spct(sun.spct, low.limit=300)
trim_spct(sun.spct, low.limit=300, fill=NULL)
trim_spct(sun.spct, low.limit=300, fill=NA)
trim_spct(sun.spct, low.limit=300, fill=0.0)
trim_spct(sun.spct, range = c(300, 400))
trim_spct(sun.spct, range = c(300, NA))
trim_spct(sun.spct, range = c(NA, 400))

trim_tails Trim (or expand) head and/or tail

Description

Trim tails of a spectrum based on wavelength limits, interpolating the values at the boundaries.Trimming
is needed for example to remove short wavelength noise when the measured spectrum extends be-
yond the known emission spectrum of the measured light source. Occasionally one may want also
to expand the wavelength range.

Usage

trim_tails(
x,
y,
low.limit = min(x),
high.limit = max(x),
use.hinges = TRUE,
fill = NULL,
verbose = TRUE

)

Arguments

x numeric vector of wavelengths.

y numeric vector of values for a spectral quantity.

low.limit smallest x-value to be kept (defaults to smallest x-value in input).

high.limit largest x-value to be kept (defaults to largest x-value in input).

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill == NULL then tails are deleted, otherwise tails of y are filled with the
value of fill.

verbose logical Use to suppress warnings.

430 trim_waveband

Value

A data.frame with variables x and y.

Note

When expanding a spectrum, if fill == NULL, expansion is not performed with a warning.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
head(with(sun.data,

trim_tails(w.length, s.e.irrad, low.limit=300)))
head(with(sun.data,

trim_tails(w.length, s.e.irrad, low.limit=300, fill=NULL)))

trim_waveband Trim (or expand) head and/or tail

Description

Trimming of waveband boundaries can be needed when the spectral data do not cover the whole
waveband, or wavebands may have to be removed altogether.

Usage

trim_waveband(
w.band,
range = NULL,
low.limit = 0,
high.limit = Inf,
trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
trunc.labels = getOption("photobiology.brief.trunc.names", default = c("]", "["))

)

trim_waveband 431

Arguments

w.band an object of class "waveband" or a list of such objects.

range a numeric vector of length two, or any other object for which function range()
will return a numeric vector of two wavelengths (nm).

low.limit shortest wavelength to be kept (defaults to 0 nm).

high.limit longest wavelength to be kept (defaults to Inf nm).

trim logical (default is TRUE which trims the wavebands at the boundary, while
FALSE discards wavebands that are partly off-boundary).

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

trunc.labels character vector of length one or two. The first string will be prepended to the
waveband name and label on left truncation and the second appended on right
truncation. If the vector is of length one, the same string will be used in both
cases.

Details

This function will accept both individual wavebands or list of wavebands. When the input is a list,
wavebands outside the range of the range will be removed from the list, and those partly outside the
target range either "trimmed" to this edge truncated if trim = TRUE is passed or excluded if trim
= FALSE). Waveband objects contain a name and a label that are used to label the returned values
of calculations that make use of them. When a waveband object is truncated so that the definition
changes, the name and label are also modified so that the change is visible when they are used. The
name and label have a string prepended or appended, and what strings are used can be set with an
R option.

Value

The returned value is a waveband object or a list of waveband objects depending on whether a
single waveband object or a list of waveband objects was supplied as argument to formal parameter
w.band. If no waveband is retained, in the first case, a NULL waveband object is returned, and in
the second case, a list of length zero is returned. If the input is a named, list, names are preserved
in the returned list.

Note

Modification of the name and label stored in the wavebands passed as input is done so that sum-
maries produced with the modified objects can be recognized as different from those computed
using the original definitions when the waveband objects are used. When the input is a named list,
the names of the retained members of the list are not modified as these are not part of the definitions.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_wl()

432 trim_wl

Examples

VIS <- waveband(c(380, 760)) # manometers

trim_waveband(VIS, c(400,700))
trim_waveband(VIS, low.limit = 400)
trim_waveband(VIS, high.limit = 700)
trim_waveband(VIS, c(400,700), trunc.labels = c(">", "<"))
trim_waveband(VIS, c(400,700), trunc.labels = "!")

trim_wl Trim head and/or tail of a spectrum

Description

Trim head and tail of a spectrum based on wavelength limits, with interpolation at range boundaries
used by default. Expansion is also possible.

Usage

trim_wl(x, range, use.hinges, fill, ...)

Default S3 method:
trim_wl(x, range, use.hinges, fill, ...)

S3 method for class 'generic_spct'
trim_wl(x, range = NULL, use.hinges = TRUE, fill = NULL, ...)

S3 method for class 'generic_mspct'
trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'waveband'
trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
trim = getOption("photobiology.waveband.trim", default = TRUE),
...

trim_wl 433

)

S3 method for class 'list'
trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
trim = getOption("photobiology.waveband.trim", default = TRUE),
...

)

Arguments

x an R object.

range a numeric vector of length two, or any other object for which function range()
will return two.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill == NULL then tails are deleted, otherwise tails are filled with the value of
fill.

... ignored (possibly used by derived methods).

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

trim logical (default is TRUE which trims the wavebands at the boundary, while
FALSE discards wavebands that are partly off-boundary).

Value

A copy of x, usually trimmed or expanded to a different length, either shorter or longer. Possibly
with some of the original spectral data values replaced with fill.

Methods (by class)

• trim_wl(default): Default for generic function

• trim_wl(generic_spct): Trim an object of class "generic_spct" or derived.

• trim_wl(generic_mspct): Trim an object of class "generic_mspct" or derived.

• trim_wl(waveband): Trim an object of class "waveband".

• trim_wl(list): Trim a list (of "waveband" objects).

434 two_filters.spct

Note

By default the w.length values for the first and last rows in the returned object are the values
supplied as range.

trim_wl when applied to waveband objects always inserts hinges when trimming.

trim_wl when applied to waveband objects always inserts hinges when trimming.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_waveband()

Examples

trim_wl(sun.spct, range = c(400, 500))
trim_wl(sun.spct, range = c(NA, 500))
trim_wl(sun.spct, range = c(400, NA))

two_filters.spct Transmittance spectrum of plastic films

Description

Datasets containing the wavelengths at a 1 nm interval and fractional total transmittance for a clear
polyester film and a yellow theatrical "gel".

Usage

two_filters.spct

two_filters.mspct

polyester.spct

yellow_gel.spct

Format

A filter_spct object with 611 rows and 2 variables. Individually as filter_spct objects, and
together as a collection stored in a filter_mspct object and in a long-form filter_spct object.

An object of class filter_mspct (inherits from generic_mspct, list) with 2 rows and 1 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
454 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
425 rows and 2 columns.

tz_time_diff 435

Details

• w.length (nm).

• Tfr (0..1).

• spct.idx (names, only in two_filters.spct).

Note

Package ’photobiologyFilters’ contains data sets for hundreds of optical filters and materials in
objects of these same classes, ready to be used with package ’photobiology’.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, water.spct, white_led.source_spct

Examples

polyester.spct
yellow_gel.spct
summary(two_filters.mspct)

tz_time_diff Time difference between two time zones

Description

Returns the difference in local time expressed in hours between two time zones at a given instant in
time. The difference due to daylight saving time or Summer and Winter time as well as historical
changes in time zones are taken into account.

Usage

tz_time_diff(
when = lubridate::now(),
tz.target = lubridate::tz(when),
tz.reference = "UTC"

)

Arguments

when datetime A time instant
tz.target, tz.reference

character Two time zones using names recognized by functions from package
’lubridate’

436 uncollect2spct

Value

A numeric value.

Note

This function is implemented using functions from package ’lubridate’. For details on the handling
of time zones, please, consult the documentation for Sys.timezone about system differences in
time zone names and handling.

uncollect2spct Extract all members from a collection

Description

Extract all members from a collection into separate objects in the parent frame of the call.

Usage

uncollect2spct(x, ...)

Default S3 method:
uncollect2spct(x, ...)

S3 method for class 'generic_mspct'
uncollect2spct(
x,
name.tag = ".spct",
ignore.case = FALSE,
check.names = TRUE,
check.overwrite = TRUE,
...

)

Arguments

x An R object

... additional named arguments passed down to f.

name.tag character. A string used as tag for the names of the objects. If of length zero,
names of members are used as named of objects. Otherwise the tag is appended,
unless already present in the member name.

ignore.case logical. If FALSE, the pattern matching used for name.tag is case sensitive and
if TRUE, case is ignored during matching.

check.names logical. If TRUE then the names of the objects created are checked to ensure
that they are syntactically valid variable names and unique. If necessary they are
adjusted (by make.names) so that they are, and if FALSE names are used as is.

untag 437

check.overwrite

logical. If TRUE trigger an error if an exisitng object would be overwritten, and
if FALSE silently overwrite objects.

Value

Utility used for its side effects, invisibly returns a character vector with the names of the objects
created.

Methods (by class)

• uncollect2spct(default): Default for generic function

• uncollect2spct(generic_mspct):

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), thin_wl()

Examples

my.mscpt <- source_mspct(list(sun1.spct = sun.spct, sun2.spct = sun.spct))
uncollect2spct(my.mscpt)
ls(pattern = "*.spct")

untag Remove tags

Description

Remove tags from an R object if present, otherwise return the object unchanged.

Usage

untag(x, ...)

Default S3 method:
untag(x, ...)

S3 method for class 'generic_spct'
untag(x, byref = FALSE, ...)

S3 method for class 'generic_mspct'
untag(x, byref = FALSE, ...)

438 upgrade_spct

Arguments

x an R object.

... ignored (possibly used by derived methods).

byref logical indicating if new object will be created by reference or by copy of x

Value

if x contains tag data they are removed and the "spct.tags" attribute is set to NA, while if x has no
tags, it is not modified. In either case, the byref argument is respected: in all cases if byref = FALSE
a copy of x is returned.

Methods (by class)

• untag(default): Default for generic function

• untag(generic_spct): Specialization for generic_spct

• untag(generic_mspct): Specialization for generic_spct

See Also

Other tagging and related functions: is_tagged(), tag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

upgrade_spct Upgrade one spectral object

Description

Update the spectral class names of objects to those used in photobiology (>= 0.6.0) and add ’version’
attribute as used in photobiology (>= 0.70).

Usage

upgrade_spct(object)

Arguments

object generic.spct A single object to upgrade

Value

The modified object (invisibly).

Note

The object is modified by reference. The class names with ending ".spct" replaced by their new
equivalents ending in "_spct".

upgrade_spectra 439

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spectra()

upgrade_spectra Upgrade one or more spectral objects

Description

Update the spectral class names of objects to those used in photobiology (>= 0.6.0).

Usage

upgrade_spectra(obj.names = ls(parent.frame()))

Arguments

obj.names char Names of objects to upgrade as a vector of character strings

Value

The modified object (invisibly).

Note

The objects are modified by reference. The class names with ending ".spct" are replaced by their
new equivalents ending in "_spct". object.names can safely include names of any R object. Names
of objects which do not belong to any the old .spct classes are ignored. This makes it possible to
supply as argument the output from ls, the default, or its equivalent objects.

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spct()

using_Tfr Use photobiology options

Description

Execute an R expression, possibly compound, using a certain setting for spectral data related op-
tions.

440 validate_geocode

Usage

using_Tfr(expr)

using_Afr(expr)

using_A(expr)

using_energy(expr)

using_photon(expr)

using_quantum(expr)

Arguments

expr an R expression to execute.

Value

The value returned by the execution of expression.

References

Based on withOptions() as offered by Thomas Lumley, and listed in https://www.burns-stat.
com/the-options-mechanism-in-r/, section Deep End, of "The Options mechanism in R" by
Patrick Burns.

validate_geocode Validate a geocode

Description

Test validity of a geocode or ensure that a geocode is valid.

Usage

validate_geocode(geocode)

is_valid_geocode(geocode)

length_geocode(geocode)

na_geocode()

Arguments

geocode data.frame with geocode data in columns "lat", "lon", and possibly also "address".

https://www.burns-stat.com/the-options-mechanism-in-r/
https://www.burns-stat.com/the-options-mechanism-in-r/

valleys 441

Details

validate_geocode Converts to tibble, checks data bounds, converts address to character if it is not
already a character vector, or add character NAs if the address column is missing.

is_valid_geocode Checks if a geocode is valid, returning 0L if not, and the number of row other-
wise.

Value

A valid geocode stored in a tibble.

FALSE for invalid, TRUE for valid.

FALSE for invalid, number of rows for valid.

A geo_code tibble with all fields set to suitable NAs.

Examples

validate_geocode(NA)
validate_geocode(data.frame(lon = -25, lat = 66))

is_valid_geocode(NA)
is_valid_geocode(1L)
is_valid_geocode(data.frame(lon = -25, lat = 66))

na_geocode()

valleys Valleys or local minima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

Usage

valleys(x, span, ignore_threshold, strict, ...)

Default S3 method:
valleys(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)

Default S3 method:
valleys(x, span = NA, ignore_threshold = NA, strict = NA, na.rm = FALSE, ...)

S3 method for class 'numeric'
valleys(x, span = 5, ignore_threshold, strict = TRUE, na.rm = FALSE, ...)

S3 method for class 'data.frame'

442 valleys

valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
var.name = y.var.name,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'source_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'response_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),

valleys 443

refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'filter_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'reflector_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'solute_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'cps_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,

444 valleys

na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'raw_spct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

valleys 445

)

S3 method for class 'response_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
valleys(

446 valleys

x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
valleys(
x,
span = 5,
ignore_threshold = 0,
strict = TRUE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

span integer A valley is defined as an element in a sequence which is smaller than
all other elements within a window of width span centered at that element. Use
NULL for the global peak.

valleys 447

ignore_threshold

numeric Value between 0.0 and 1.0 indicating the relative size compared to
tallest peak threshold below which peaks will be ignored. Negative values set a
threshold so that the tallest peaks are ignored, instead of the shortest.

strict logical If TRUE, an element must be strictly greater than all other values in its
window to be considered a peak.

... ignored

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

var.name, x.var.name, y.var.name
character Name of column where to look for valleys.

refine.wl logical Flag indicating if valley location should be refined by fitting a function.

method character String with the name of a method. Currently only spline interpolation
is implemented.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A subset of x with rows corresponding to local minima.

Methods (by class)

• valleys(default): Default function usable on numeric vectors.

• valleys(default): Default returning always NA.

• valleys(numeric): Default function usable on numeric vectors.

• valleys(data.frame): Method for "data.frame" objects.

• valleys(generic_spct): Method for "generic_spct" objects.

• valleys(source_spct): Method for "source_spct" objects.

• valleys(response_spct): Method for "response_spct" objects.

• valleys(filter_spct): Method for "filter_spct" objects.

• valleys(reflector_spct): Method for "reflector_spct".

• valleys(solute_spct): Method for "solute_spct" objects.

• valleys(cps_spct): Method for "cps_spct" objects.

• valleys(raw_spct): Method for "raw_spct" objects.

• valleys(generic_mspct): Method for "generic_mspct" objects.

• valleys(source_mspct): Method for "source_mspct" objects.

448 verbose_as_default

• valleys(response_mspct): Method for "cps_mspct" objects.

• valleys(filter_mspct): Method for "filter_mspct" objects.

• valleys(reflector_mspct): Method for "reflector_mspct" objects.

• valleys(solute_mspct): Method for "solute_mspct" objects.

• valleys(cps_mspct): Method for "cps_mspct" objects.

• valleys(raw_mspct): Method for "raw_mspct" objects.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), wls_at_target()

Examples

valleys(sun.spct, span = 50)

valleys(sun.spct)

verbose_as_default Set error reporting options

Description

Set error reporting related options easily.

Usage

verbose_as_default(flag = TRUE)

strict_range_as_default(flag = TRUE)

Arguments

flag logical.

Value

Previous value of the modified option.

v_insert_hinges 449

v_insert_hinges Insert spectral data values at new wavelength values.

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly re-
duces the errors caused by interpolating the weighted irradiance during integration of the effective
spectral irradiance. This is specially true when data have a relatively large wavelength step size
and/or when the weighting function used has discontinuities in its value or slope. This function
differs from insert_hinges() in that it returns a vector of y values instead of a tibble.

Usage

v_insert_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order).

y numeric vector.

h a numeric vector giving the wavelengths at which the y values should be in-
serted by interpolation, no interpolation is indicated by an empty numeric vector
(numeric(0)).

Value

A numeric vector with the numeric values of y, but longer. Unless the hinge values were already
present in y, each inserted hinge, expands the vector by two values.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_replace_hinges()

v_replace_hinges Overwrite spectral data values at existing wavelength values.

Description

Overwriting spectral data with interpolated values at wavelengths values containing bad data is
needed when cleaning spectral data. This function differs from insert_hinges() in that it returns
a vector of y values instead of a tibble.

450 water.spct

Usage

v_replace_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order).

y numeric vector.

h a numeric vector giving the wavelengths at which the y values should be re-
placed by interpolation, no interpolation is indicated by an empty numeric vector
(numeric(0)).

Value

A numeric vector with the numeric values of y with values at the hinges replaced by interpolation
of neighbours.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges()

water.spct Molar spectral attenuation coefficient of water

Description

A dataset containing the wavelengths at a 2 nm interval and the corresponding attenuation coeffi-
cients.

Usage

water.spct

Format

A solute_spct object with 251 rows and 2 variables

Details

• w.length (nm), range 300 to 800 nm.

• K.mole (cm-1/M)

water_vp_sat 451

Author(s)

Buiteveld et al. (1994) (original data)

References

H. Buiteveld and J. M. H. Hakvoort and M. Donze (1994) "The optical properties of pure water," in
SPIE Proceedings on Ocean Optics XII, edited by J. S. Jaffe, 2258, 174–183.

https://omlc.org/spectra/water/

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, white_led.source_spct

Examples

head(water.spct)
summary(water.spct)
solute_properties(water.spct)
cat(comment(water.spct))

water_vp_sat Water vapour pressure

Description

Approximate water pressure in air as a function of temperature, and its inverse the calculation of
dewpoint.

Usage

water_vp_sat(
temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE

)

water_dp(water.vp, over.ice = FALSE, method = "tetens", check.range = TRUE)

water_fp(water.vp, over.ice = TRUE, method = "tetens", check.range = TRUE)

water_vp2mvc(water.vp, temperature)

water_mvc2vp(water.mvc, temperature)

https://omlc.org/spectra/water/

452 water_vp_sat

water_vp2RH(
water.vp,
temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE

)

water_RH2vp(
relative.humidity,
temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE

)

water_vp_sat_slope(
temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE,
temperature.step = 0.1

)

psychrometric_constant(atmospheric.pressure = 101325)

Arguments

temperature numeric vector of air temperatures (C).

over.ice logical vector Is the estimate for equilibrium with liquid water or with ice.

method character Currently "tetens", modified "magnus", "wexler" and "goff.gratch"
equations are supported.

check.range logical Flag indicating whether to check or not that arguments for temperature
are within the range of validity of the method used.

water.vp numeric vector of water vapour pressure in air (Pa).

water.mvc numeric vector of water vapour concnetration as mass per volume (gm−3).

pc logical flag for result returned as percent or not.
relative.humidity

numeric Relative humidity as fraction of 1.
temperature.step

numeric Delta or step used to estimate the slope as a finite difference (C).
atmospheric.pressure

numeric Atmospheric pressure (Pa).

water_vp_sat 453

Details

Function water_vp_sat() provides implementations of several well known equations for the esti-
mation of saturation vapor pressure in air. Functions water_dp() and water_fp() use the inverse
of these equations to compute the dew point or frost point from water vapour pressure in air. The
inverse functions are either analytical solutions or fitted approximations. None of these functions
are solved numerically by iteration.

Method "tetens" implements Tetens’ (1930) equation for the cases of equilibrium with a water
and an ice surface. Method "magnus" implements the modified Magnus equations of Alduchov and
Eskridge (1996, eqs. 21 and 23). Method "wexler" implements the equations proposed by Wexler
(1976, 1977), and their inverse according to Hardy (1998). Method "goff.gratch" implements
the equations of Groff and Gratch (1946) with the minor updates of Groff (1956).

The equations are approximations, and in spite of their different names, Tetens’ and Magnus’ equa-
tions have the same form with the only difference in the values of the parameters. However, the
modified Magnus equation is more accurate as Tetens equation suffers from some bias errors at ex-
treme low temperatures (< -40 C). In contrast Magnus equations with recently fitted values for the
parameters are usable for temperatures from -80 C to +50 C over water and -80 C to 0 C over ice.
The Groff Gratch equation is more complex and is frequently used as a reference in comparison as
it is considered reliable over a broad range of temperatures. Wexler’s equations are computationally
simpler and fitted to relatively recent data. There is little difference at temperatures in the range -20
C to +50 C, and differences become large at extreme temperatures. Temperatures outside the range
where estimations are highly reliable for each equation return NA, unless extrapolation is enabled by
passing FALSE as argument to parameter check.range.

The switch between equations for ice or water cannot be based on air temperature, as it depends on
the presence or not of a surface of liquid water. It must be set by passing an argument to parameter
over.ice which defaults to FALSE.

Tetens equation is still very frequently used, and is for example the one recommended by FAO for
computing potential evapotranspiration. For this reason it is used as default here.

Value

A numeric vector of partial pressures in pascal (Pa) for water_vp_sat() and water_mvc2vp(), a
numeric vector of dew point temperatures (C) for water_dp() and numeric vector of mass per vol-
ume concentrations (gm−3) for water_vp2mvc(). water_vp_sat() and psychrometric_constant()
both return numeric vectors of pressure per degree of temperature (PaC−1)

Note

The inverse of the Groff Gratch equation has yet to be implemented.

References

Tetens, O., 1930. Uber einige meteorologische Begriffe. Zeitschrift fur Geophysik, Vol. 6:297.

Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 F, in Trans-
actions of the American Society of Heating and Ventilating Engineers, pp 95-122, presented at the
52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York,
1946.

454 water_vp_sat

Wexler, A. (1976) Vapor Pressure Formulation for Water in Range 0 to 100°C. A Revision, Journal
of Research ofthe National Bureau of Standards: A. Physics and Chemistry, September-December
1976, Vol. 80A, Nos.5 and 6, 775-785

Wexler, A., (1977) Vapor Pressure Formulation for Ice, Journal of Research of the National Bureau
of Standards - A. Physics and Chemistry, Vol. 81A, No. 1, 5-19

Alduchov, O. A., Eskridge, R. E., 1996. Improved Magnus Form Approximation of Saturation
Vapor Pressure. Journal of Applied Meteorology, 35: 601-609 .

Hardy, Bob (1998) ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint tem-
perature, andenhancement factors in the range -100 TO +100 C. The Proceedings of the Third
International Symposium on Humidity & Moisture, Teddington, London, England, April 1998.
https://www.decatur.de/javascript/dew/resources/its90formulas.pdf

Monteith, J., Unsworth, M. (2008) Principles of Environmental Physics. Academic Press, Amster-
dam.

Allen R G, Pereira L S, Raes D, Smith M. (1998) Crop evapotranspiration: Guidelines for comput-
ing crop water requirements. FAO Irrigation and drainage paper 56. Rome: FAO.

[Equations describing the physical properties of moist air](http://www.conservationphysics.org/atmcalc/atmoclc2.pdf)

Examples

water_vp_sat(20) # C -> Pa
water_vp_sat(temperature = c(0, 10, 20, 30, 40)) # C -> Pa
water_vp_sat(temperature = -10) # over water!!
water_vp_sat(temperature = -10, over.ice = TRUE)
water_vp_sat(temperature = 20) / 100 # C -> mbar

water_vp_sat(temperature = 20, method = "magnus") # C -> Pa
water_vp_sat(temperature = 20, method = "tetens") # C -> Pa
water_vp_sat(temperature = 20, method = "wexler") # C -> Pa
water_vp_sat(temperature = 20, method = "goff.gratch") # C -> Pa

water_vp_sat(temperature = -20, over.ice = TRUE, method = "magnus") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "tetens") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "wexler") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "goff.gratch") # C -> Pa

water_dp(water.vp = 1000) # Pa -> C
water_dp(water.vp = 1000, method = "magnus") # Pa -> C
water_dp(water.vp = 1000, method = "wexler") # Pa -> C
water_dp(water.vp = 500, over.ice = TRUE) # Pa -> C
water_dp(water.vp = 500, method = "wexler", over.ice = TRUE) # Pa -> C

water_fp(water.vp = 300) # Pa -> C
water_dp(water.vp = 300, over.ice = TRUE) # Pa -> C

water_vp2RH(water.vp = 1500, temperature = 20) # Pa, C -> RH %
water_vp2RH(water.vp = 1500, temperature = c(20, 30)) # Pa, C -> RH %
water_vp2RH(water.vp = c(600, 1500), temperature = 20) # Pa, C -> RH %

water_vp2mvc(water.vp = 1000, temperature = 20) # Pa -> g m-3

https://www.decatur.de/javascript/dew/resources/its90formulas.pdf

waveband 455

water_mvc2vp(water.mvc = 30, temperature = 40) # g m-3 -> Pa

water_dp(water.vp = water_mvc2vp(water.mvc = 10, temperature = 30)) # g m-3 -> C

water_vp_sat_slope(temperature = 20) # C -> Pa / C

psychrometric_constant(atmospheric.pressure = 81.8e3) # Pa -> Pa / C

waveband Waveband constructor method

Description

Constructor for "waveband" objects that can be used as input when calculating irradiances.

Usage

waveband(
x = NULL,
weight = NULL,
SWF.e.fun = NULL,
SWF.q.fun = NULL,
norm = NULL,
SWF.norm = NULL,
hinges = NULL,
wb.name = NULL,
wb.label = wb.name

)

new_waveband(
w.low,
w.high,
weight = NULL,
SWF.e.fun = NULL,
SWF.q.fun = NULL,
norm = NULL,
SWF.norm = NULL,
hinges = NULL,
wb.name = NULL,
wb.label = wb.name

)

456 waveband

Arguments

x any R object on which applying the method range() yields an vector of two
numeric values, describing a range of wavelengths [nm].

weight a character string "SWF" or "BSWF", use NULL (the default) to indicate no weight-
ing used when calculating irradiance.

SWF.e.fun, SWF.q.fun
a functions giving multipliers for a spectral weighting function (energy and
quantum, respectively) as a function of wavelength [nm].

norm a single numeric value indicating the wavelength [nm] at which the SWF should
be normalized to 1.0; NULL is interpreted as no normalization.

SWF.norm a numeric value giving the native normalization wavelength [nm] used by SWF.e.fun
and SWF.q.fun.

hinges a numeric vector giving the wavelengths at which values in s.irrad should be
inserted by interpolation before integration is attempted. No interpolation is
indicated by an empty vector (numeric(0)), while interpolation at both bound-
aries of the band is indicated by NULL.

wb.name character string giving the name for the waveband defined, default is NULL for
an automatically generated name.

wb.label character string giving the label of the waveband to be used for labelling com-
puted summaries or plots, default is wb.name. (This is usually a shorter character
string than wb.name.)

w.low, w.high numeric value, wavelengths at the short end and long ends of the wavelength
band [nm].

Details

Objects of class waveband are used to store the different bits of information needed to compute sum-
maries from spectral data by integration over wavelengths. The wavelength ranges, possible spectral
weighting functions (SWF) or biological spectral weighting functions (BSWF), their normalization
wavelengths and names and labels used for reporting the results are all stored in waveband objects.
This facilitates the use of functions that compute summaries, as well as ensures consistency in com-
putations and labelling, as all the bits of information are passed together. Class "waveband" is
derived from R class list.

Value

a waveband object

Functions

• new_waveband(): A less flexible variant

See Also

Other waveband constructors: split_bands()

waveband_ratio 457

Examples

waveband(c(400,700))

new_waveband(400,700)

waveband_ratio Photon or energy ratio

Description

This function gives the (energy or photon) irradiance ratio between two given wavebands of a radi-
ation spectrum.

Usage

waveband_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.out.num = NULL,
unit.out.denom = unit.out.num,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric Vector of wavelengths [nm].
s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]

as indicated by the argument pased to unit.in.
w.band.num, w.band.denom

waveband objects used to compute the numerator and denominator of the ratio.
unit.out.num, unit.out.denom

character Base of expression used to compute the numerator and denominator
of the ratio. Allowed values "energy", and "photon", or its alias "quantum".

unit.in character Allowed values "energy", and "photon", or its alias "quantum".
check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

458 wb2rect_spct

Value

a single numeric value giving the ratio

Note

The default for both w.band parameters is a waveband covering the whole range of w.length. From
version 0.9.19 onwards use of this default does not trigger a warning, but instead is used silently.

Examples

photon:photon ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
new_waveband(400,700), "photon"))

energy:energy ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
new_waveband(400,700), "energy"))

energy:photon ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,700),
new_waveband(400,700),
"energy", "photon"))

photon:photon ratio waveband : whole spectrum
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
unit.out.num="photon"))

photon:photon ratio of whole spectrum should be equal to 1.0
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
unit.out.num="photon"))

wb2rect_spct Create tagged spectrum from wavebands

Description

Create a generic_spct object with wavelengths from the range of wavebands in a list. The spectrum
is suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is
added to the spectrum.

wb2spct 459

Usage

wb2rect_spct(w.band, short.names = TRUE, chroma.type = "CMF")

fast_wb2rect_spct(w.band, chroma.type = "CMF", simplify = TRUE)

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the wave-
lengths in variable w.length of the returned spectrum

short.names logical Flag indicating whether to use short or long names for wavebands

chroma.type character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

simplify logical Flag indicating whether to merge neighboring rectangles of equal color.
Simplification is done only for narrow wavebands.

Value

A generic.spectrum object, with columns w.length, wl.low, wl.hi, wl.color, wb.color and wb.name.
The w.length values are the midpoint of the wavebands, wl.low and wl.high give the boundaries of
the wavebands, wl.color the color definition corresponding to the wavelength at the center of the
waveband and wb.color the color of the waveband as a whole (assuming a flat energy irradiance
spectrum). Different spectral data variables are set to zero and added making the returned value
compatible with classes derived from generic_spct.

Note

Function fast_wb2rect_spct() differs from wb2rect_spct() in that it computes colors for nar-
row wavebands based on the midpoint wavelength and uses vectorization when possible. It always
returns color definitions with short names, which are also used as waveband names for narrow
wavebands and merged wavebands. The purpose of merging of rectangles is to speed up rendering
and to reduce the size of vector graphics output. This function should be used with care as the color
definitions returned are only approximate and original waveband names can be lost.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2spct(), wb2tagged_spct()

wb2spct Create spectrum from wavebands

Description

Create a generic_spct object with wavelengths from wavebands in a list.

Usage

wb2spct(w.band)

460 wb2tagged_spct

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the wave-
lengths in variable w.length of the returned spectrum

Value

A generic.spectrum object, with columns w.length set to the union of all boundaries and hinges
defined in the waveband(s). Different spectral data variables are set to zero and added making the
returned value compatible with classes derived from generic_spct.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2tagged_spct()

wb2tagged_spct Create tagged spectrum from wavebands

Description

Create a tagged generic_spct object with wavelengths from the range of wavebands in a list, and
names of the same bands as factor levels, and corresponding color definitions. The spectrum is not
suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is not
added to the spectrum.

Usage

wb2tagged_spct(
w.band,
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
...

)

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the region(s)
of the spectrum that are tagged and the wavelengths returned in variable w.length.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

short.names logical Flag indicating whether to use short or long names for wavebands.

chroma.type character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

... ignored (possibly used by derived methods).

wb_trim_as_default 461

Value

A spectrum as returned by wb2spct but additionally tagged using function tag

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2spct()

wb_trim_as_default Set computation options

Description

Set computation related options easily.

Usage

wb_trim_as_default(flag = TRUE)

use_cached_mult_as_default(flag = TRUE)

Arguments

flag logical.

Value

Previous value of the modified option.

white_led.source_spct White led bulb spectrum

Description

Datasets containing wavelengths and the corresponding spectral irradiance data for an Osram warm
white led lamp, and the corresponding raw instrument counts and counts per second data underlying
them.

Usage

white_led.source_spct

white_led.cps_spct

white_led.raw_spct

462 wl2wavenumber

Format

A source_spct object with 1421 rows and 2 columns, a cps_spct object with 2068 rows and 2
columns, and a raw_spct object with 2068 rows and 4 columns.

An object of class cps_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 2068
rows and 2 columns.

An object of class raw_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 2068
rows and 4 columns.

Details

• w.length (nm), range 250 to 900 nm.

• s.e.irrad (W m-2 nm-1)

or

• w.length (nm), range 188 to 1117 nm.

• cps

or

• w.length (nm), range 188 to 1117 nm.

• counts_1

• counts_2

• counts_3

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, water.spct

Examples

white_led.source_spct

wl2wavenumber Wavelength conversions

Description

Convert wavelength (nm) into wave number, frequency (Hz) or energy per photon (J, or eV) and
back.

wl2wavenumber 463

Usage

wl2wavenumber(w.length, unit.exponent = 0)

wavenumber2wl(wavenumber, unit.exponent = 0)

wl2frequency(w.length, unit.exponent = 0)

frequency2wl(frequency, unit.exponent = 0)

wl2energy(w.length, unit.exponent = 0, unit = "joule")

energy2wl(photon.energy, unit.exponent = 0, unit = "joule")

Arguments

w.length numeric wavelength (nm)

unit.exponent integer Exponent of the scale multiplier implicit in result, e.g., use 3 for kJ.

wavenumber numeric Wave number in waves per metre, possibly with a scale factor according
to unit.exponent.

frequency numeric Frequency in Hz, possibly with the scale factor according to unit.exponent.

unit character One of "joule" or "eV".

photon.energy numeric Energy of one photon in joule or eV, possibly with a scale factor ac-
cording to unit.exponent.

Details

These functions always expect as input and return wavelengths expressed in nanometres (nm) as
all other functions in the R for photobiology suite of packages. Conversions depend on Plank’s
constant, h, the speed of light in vacuum, c, and Avogadro’s number, NA. The values used for these
constants have at least nine significant digits.

Examples

wl2wavenumber(600) # wavelength in nm -> wave number
wavenumber2wl(1666666.66) # wave number -> wavelength in nm
wl2frequency(600) # wavelength in nm -> wave frequency (Hz)
frequency2wl(499654096666667) # wave frequency (Hz) -> wavelength in nm
wl2energy(600) # wavelength in nm -> energy of one photon (J)
wl2energy(600, unit = "eV") # wavelength in nm -> energy of one photon (eV)
wl2energy(600,

unit.exponent = -3,
unit = "eV") # wavelength in nm -> energy of one photon (meV)

energy2wl(2066.40330,
unit.exponent = -3,
unit = "eV") # energy of one photon (meV) -> wavelength (nm)

464 wls_at_target

wls_at_target Find wavelengths values corresponding to a target spectral value

Description

Find wavelength values corresponding to a target spectral value in a spectrum. The name of the
column of the spectral data to be used is inferred from the class of x and the argument passed to
unit.out or filter.qty or their defaults that depend on R options set.

Usage

wls_at_target(
x,
target = NULL,
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

Default S3 method:
wls_at_target(
x,
target = NULL,
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'data.frame'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
...

)

S3 method for class 'generic_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,

wls_at_target 465

idfactor = length(target) > 1,
na.rm = FALSE,
col.name = NULL,
y.var.name = col.name,
...

)

S3 method for class 'source_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

466 wls_at_target

)

S3 method for class 'solute_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'raw_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'generic_mspct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x data.frame or spectrum object.

target numeric or character vector. A numeric value indicates the spectral quantity

wls_at_target 467

value for which wavelengths are to be searched. A character string represent-
ing a number is converted to numeric. A character value representing a num-
ber followed by a function name, will be also accepted and decoded, such that
"0.1max" is interpreted as targeting one tenth of the maximum value in the
column. The character strings "half.maximum" and "HM" are synonyms for
"0.5max" while "half.range" and "HR" are synonyms for "0.5range".

interpolate logical Indicating whether the nearest wavelength value in x should be returned
or a value calculated by linear interpolation between wavelength values strad-
dling the target.

idfactor logical or character Generates an index column of factor type. If idfactor =
TRUE then the column is auto named target.idx. Alternatively the column name
can be directly passed as argument to idfactor as a character string.

na.rm logical indicating whether NA values should be stripped before searching for the
target.

... currently ignored.
x.var.name, y.var.name, col.name

character The name of the columns in which to search for the target value. Use
of col.name is deprecated, and is a synonym for y.var.name.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A data.frame, a spectrum object or a collection of spectra object of the same class as x with fewer
rows, possibly even no rows. If FALSE is passed to interpolate a subset of x is returned, other-
wise a new object of the same class containing interpolated wavelengths for the target value is
returned. As ‘target‘ accepts a vector or list as argument, a factor can be added to the output with
the corresponding target value.

Methods (by class)

• wls_at_target(default): Default returning always an empty object of the same class as x.

• wls_at_target(data.frame): Method for "data.frame" objects.

• wls_at_target(generic_spct): Method for "generic_spct" objects.

• wls_at_target(source_spct): Method for "source_spct" objects.

• wls_at_target(response_spct): Method for "response_spct" objects.

• wls_at_target(filter_spct): Method for "filter_spct" objects.

• wls_at_target(reflector_spct): Method for "reflector_spct" objects.

• wls_at_target(solute_spct): Method for "solute_spct" objects.

468 wl_max

• wls_at_target(cps_spct): Method for "cps_spct" objects.

• wls_at_target(raw_spct): Method for "raw_spct" objects.

• wls_at_target(generic_mspct): Method for "generic_mspct" objects.

Note

When interpolation is used, only column w.length and the column against which the target value
was compared are included in the returned object, otherwise, all columns in x are returned. We
implement support for data.frame to simplify the coding of ’ggplot2’ stats using this function.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys()

Examples

wls_at_target(sun.spct, target = 0.1)
wls_at_target(sun.spct, target = 2e-6, unit.out = "photon")
wls_at_target(polyester.spct, target = "HM")
wls_at_target(polyester.spct, target = "HM", interpolate = TRUE)
wls_at_target(polyester.spct, target = "HM", idfactor = "target")
wls_at_target(polyester.spct, target = "HM", filter.qty = "absorbance")

wl_max Wavelength maximum

Description

A method specialization that returns the wavelength maximum [nm] from objects of classes waveband
or of class generic_spct or derived.

Usage

wl_max(x, na.rm = FALSE)

S3 method for class 'waveband'
max(..., na.rm = FALSE)

S3 method for class 'generic_spct'
max(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
max(..., na.rm = FALSE, idx = "spct.idx")

wl_midpoint 469

Arguments

x generic_spct, generic_mspct or waveband object.

na.rm ignored

... numeric, waveband or generic_spct arguments.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a length-one vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• max(generic_spct):

• max(generic_mspct):

Examples

max(sun.spct)
wl_max(sun.spct)

wl_midpoint Midpoint

Description

A method that returns the wavelength [nm] (or value) at the center of the wavelength range of
objects of classes waveband or of class generic_spct or derived (or the midpoint from a numeric
vector).

Usage

wl_midpoint(x, ...)

midpoint(x, ...)

Default S3 method:
midpoint(x, ...)

S3 method for class 'numeric'
midpoint(x, ...)

S3 method for class 'waveband'
midpoint(x, ...)

470 wl_midpoint

S3 method for class 'generic_spct'
midpoint(x, ...)

S3 method for class 'generic_mspct'
midpoint(x, ..., idx = "spct.idx")

Arguments

x an R object

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A numeric value equal to max(x) - min(x)) / 2. In the case of spectral objects a wavelength [nm].
For any other R object, according to available definitions of min and max.

Methods (by class)

• midpoint(default): Default method for generic function

• midpoint(numeric): Default method for generic function

• midpoint(waveband): Wavelength at center of a "waveband".

• midpoint(generic_spct): Method for "generic_spct".

• midpoint(generic_mspct): Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Examples

midpoint(10:20)
midpoint(sun.spct)
wl_midpoint(sun.spct)

midpoint(sun.spct)

wl_min 471

wl_min Wavelength minimum

Description

A method specialization that returns the wavelength minimum [nm] from objects of classes waveband
or of class generic_spct or derived.

Usage

wl_min(x, na.rm = FALSE)

S3 method for class 'waveband'
min(..., na.rm = FALSE)

S3 method for class 'generic_spct'
min(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
min(..., na.rm = FALSE, idx = "spct.idx")

Arguments

x generic_spct, generic_mspct or waveband object.
na.rm ignored
... not used in current version
idx character Name of the column with the names of the members of the collection

of spectra.

Value

a length-one vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• min(generic_spct):
• min(generic_mspct):

See Also

Other wavelength summaries: wl_midpoint(), wl_range(), wl_stepsize()

Examples

min(sun.spct)
wl_min(sun.spct)

472 wl_range

wl_range Wavelength range

Description

A method specialization that returns the wavelength range [nm] from objects of classes waveband
or of class generic_spct or derived.

Usage

wl_range(x, na.rm = FALSE)

S3 method for class 'waveband'
range(..., na.rm = FALSE)

S3 method for class 'generic_spct'
range(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
range(..., na.rm = FALSE, idx = "spct.idx")

Arguments

x generic_spct, generic_mspct or waveband object.

na.rm ignored

... a single R object

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a length-two vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• range(generic_spct):

• range(generic_mspct):

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_stepsize()

wl_stepsize 473

Examples

range(sun.spct)
wl_range(sun.spct)

range(sun.spct)

wl_stepsize Stepsize

Description

Method returning the range of step sizes in an object; i.e., the Range of differences between succes-
sive sorted values. In particular the wavelength step sizes [nm] of objects of class generic_spct
or derived (or the step sizes of values in a numeric vector).

Usage

wl_stepsize(x, ...)

stepsize(x, ...)

Default S3 method:
stepsize(x, ...)

S3 method for class 'numeric'
stepsize(x, ...)

S3 method for class 'generic_spct'
stepsize(x, ...)

S3 method for class 'generic_mspct'
stepsize(x, ..., idx = "spct.idx")

Arguments

x an R object

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A numeric vector of length 2 with min and maximum stepsize values.

474 w_length2rgb

Methods (by class)

• stepsize(default): Default function usable on numeric vectors.

• stepsize(numeric): Method for numeric vectors.

• stepsize(generic_spct): Method for "generic_spct" objects.

• stepsize(generic_mspct): Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_range()

Examples

stepsize(sun.spct)
wl_stepsize(sun.spct)

stepsize(sun.spct)

w_length2rgb Wavelength to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

w_length2rgb(w.length, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)

Arguments

w.length numeric Vector of wavelengths [nm].

sens chroma_spct Used as chromaticity definition.

color.name character Used for naming the rgb color definition.

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be ob-
tained using function col2rgb().

See Also

Other color functions: rgb_spct(), w_length_range2rgb()

w_length_range2rgb 475

Examples

col2rgb(w_length2rgb(580))
col2rgb(w_length2rgb(c(400, 500, 600, 700)))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name=c("a","b","c","d")))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name="a"))

w_length_range2rgb Wavelength range to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

w_length_range2rgb(
w.length,
sens = photobiology::ciexyzCMF2.spct,
color.name = NULL

)

Arguments

w.length numeric vector of wavelengths (nm) of length 2. If longer, its range is used.

sens chroma_spct Used as the chromaticity definition.

color.name character Used for naming the rgb color definition(s) returned.

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be ob-
tained by calling function col2rgb.

See Also

Other color functions: rgb_spct(), w_length2rgb()

Examples

col2rgb(w_length_range2rgb(c(500,600)))
col2rgb(w_length_range2rgb(550))
col2rgb(w_length_range2rgb(500:600))

476 ^.generic_spct

^.generic_spct Arithmetic Operators

Description

Power operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 ^ e2

Arguments

e1 an object of class "generic_spct"

e2 a numeric vector. possibly of length one.

See Also

Other math operators and functions: MathFun, convolve_each(), div-.generic_spct, log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

Index

∗ Coercion methods for collections of
spectra

as.calibration_mspct, 24
as.chroma_mspct, 26
as.cps_mspct, 28
as.filter_mspct, 30
as.generic_mspct, 33
as.object_mspct, 37
as.raw_mspct, 40
as.reflector_mspct, 42
as.response_mspct, 45
as.solute_mspct, 48
as.source_mspct, 51
split2mspct, 356
subset2mspct, 367

∗ Evapotranspiration and energy balance
related functions.

ET_ref, 123
net_irradiance, 231

∗ K attribute functions
getKType, 172
setKType, 320

∗ Local solar time functions
as.solar_date, 47
is.solar_time, 207
print.solar_time, 259
solar_time, 340

∗ Reflectance ratio functions
Rfr_fraction, 294
Rfr_normdiff, 298
Rfr_ratio, 302

∗ Spectral data examples
A.illuminant.spct, 10
black_body.spct, 59
ccd.spct, 62
clear.spct, 79
D65.illuminant.spct, 95
green_leaf.spct, 186
Ler_leaf.spct, 219

phenylalanine.spct, 250
photodiode.spct, 251
sun.spct, 373
sun_daily.spct, 377
sun_evening.spct, 378
two_filters.spct, 434
water.spct, 450
white_led.source_spct, 461

∗ Time of day functions
as_tod, 57
format.tod_time, 154
print.tod_time, 260

∗ Visual response data examples
beesxyzCMF.spct, 58
ciev10.spct, 69
ciev2.spct, 69
ciexyzCC10.spct, 70
ciexyzCC2.spct, 71
ciexyzCMF10.spct, 72
ciexyzCMF2.spct, 73
cone_fundamentals10.spct, 86

∗ astronomy related functions
day_night, 96
format.solar_time, 154
sun_angles, 374

∗ auxiliary functions
normalize_range_arg, 241

∗ collections of spectra classes family
generic_mspct, 166

∗ color functions
rgb_spct, 305
w_length2rgb, 474
w_length_range2rgb, 475

∗ constructors of spectral objects
as.calibration_spct, 25
as.chroma_spct, 27
as.cps_spct, 29
as.filter_spct, 32
as.generic_spct, 36

477

478 INDEX

as.object_spct, 39
as.raw_spct, 41
as.reflector_spct, 44
as.response_spct, 46
as.solute_spct, 50
as.source_spct, 53
source_spct, 341

∗ conversion of collections of spectra
join_mspct, 216

∗ data validity check functions
check_spct, 64
check_spectrum, 67
check_w.length, 68
enable_check_spct, 116

∗ datasets
A.illuminant.spct, 10
beesxyzCMF.spct, 58
black_body.spct, 59
ccd.spct, 62
ciev10.spct, 69
ciev2.spct, 69
ciexyzCC10.spct, 70
ciexyzCC2.spct, 71
ciexyzCMF10.spct, 72
ciexyzCMF2.spct, 73
clear.spct, 79
cone_fundamentals10.spct, 86
D2.UV653, 93
D65.illuminant.spct, 95
green_leaf.spct, 186
Ler_leaf.spct, 219
phenylalanine.spct, 250
photodiode.spct, 251
r4p_pkgs, 284
sun.spct, 373
sun_daily.spct, 377
sun_evening.spct, 378
two_filters.spct, 434
water.spct, 450
white_led.source_spct, 461

∗ despike and valleys functions
despike, 101

∗ experimental utility functions
collect2mspct, 81
drop_user_cols, 112
thin_wl, 417
uncollect2spct, 436

∗ idfactor attribute functions

getIdFactor, 170
setIdFactor, 317

∗ illumination functions
illuminance, 189

∗ internal.
v_insert_hinges, 449
v_replace_hinges, 449

∗ interpolate functions
interpolate_wl, 196

∗ irradiance functions
e_fluence, 129
e_irrad, 135
fluence, 151
irrad, 198
q_fluence, 268
q_irrad, 274

∗ low-level functions operating on numeric
vectors.

as_energy, 55
as_quantum_mol, 56
calc_multipliers, 60
div_spectra, 110
energy_irradiance, 117
energy_ratio, 119
insert_hinges, 191
integrate_xy, 193
interpolate_spectrum, 195
irradiance, 201
oper_spectra, 242
photon_irradiance, 253
photon_ratio, 254
photons_energy_ratio, 252
prod_spectra, 261
s_e_irrad2rgb, 379
split_energy_irradiance, 360
split_photon_irradiance, 363
subt_spectra, 368
sum_spectra, 372
trim_tails, 429
v_insert_hinges, 449
v_replace_hinges, 449

∗ math operators and functions
^.generic_spct, 476
convolve_each, 91
div-.generic_spct, 110
log, 220
MathFun, 223
minus-.generic_spct, 226

INDEX 479

mod-.generic_spct, 226
plus-.generic_spct, 256
round, 307
sign, 336
slash-.generic_spct, 337
times-.generic_spct, 421

∗ measurement metadata functions
add_attr2tb, 18
get_attributes, 183
getFilterProperties, 167
getHowMeasured, 169
getInstrDesc, 171
getInstrSettings, 171
getSoluteProperties, 176
getWhatMeasured, 179
getWhenMeasured, 180
getWhereMeasured, 182
isValidInstrDesc, 209
isValidInstrSettings, 209
select_spct_attributes, 308
setFilterProperties, 310
setHowMeasured, 316
setInstrDesc, 318
setInstrSettings, 319
setSoluteProperties, 327
setWhatMeasured, 332
setWhenMeasured, 333
setWhereMeasured, 334
spct_attr2tb, 347
spct_metadata, 348
trimInstrDesc, 425
trimInstrSettings, 426

∗ multiple.wl attribute functions
getMultipleWl, 173
setMultipleWl, 321

∗ peaks and valleys functions
find_peaks, 145
find_spikes, 146
get_peaks, 185
peaks, 243
replace_bad_pixs, 290
spikes, 351
valleys, 441
wls_at_target, 464

∗ photon and energy ratio functions
e_fraction, 131
e_ratio, 138
eq_ratio, 120

q_fraction, 271
q_ratio, 278
qe_ratio, 266

∗ quantity conversion functions
A2T, 11
Afr2T, 21
any2T, 23
as_quantum, 55
e2q, 113
e2qmol_multipliers, 115
e2quantum_multipliers, 115
q2e, 264
T2A, 400
T2Afr, 402

∗ query units functions
is_absorbance_based, 210
is_mole_based, 212
is_photon_based, 214

∗ rescaling functions
fscale, 155
fshift, 161
getNormalized, 174
getScaled, 175
is_normalized, 213
is_scaled, 215
normalize, 233
setNormalized, 322
setScaled, 326

∗ response functions
e_response, 141
q_response, 281
response, 291

∗ set and unset ’multi spectral’ class
functions

rmDerivedMspct, 306
shared_member_class, 336

∗ set and unset spectral class functions
rmDerivedSpct, 306
setGenericSpct, 312

∗ split a spectrum into regions functions
split_irradiance, 362

∗ tagging and related functions
is_tagged, 215
tag, 404
untag, 437
wb2rect_spct, 458
wb2spct, 459
wb2tagged_spct, 460

480 INDEX

∗ time attribute functions
checkTimeUnit, 63
convertThickness, 89
convertTimeUnit, 90
getTimeUnit, 178
setTimeUnit, 331

∗ transmittance ratio functions
Tfr_fraction, 406
Tfr_normdiff, 410
Tfr_ratio, 413

∗ trim functions
clip_wl, 80
trim_spct, 427
trim_waveband, 430
trim_wl, 432

∗ upgrade from earlier versions
is.old_spct, 206
upgrade_spct, 438
upgrade_spectra, 439

∗ waveband attributes
is_effective, 211
labels, 218
normalization, 232

∗ waveband constructors
split_bands, 359
waveband, 455

∗ wavelength summaries
wl_midpoint, 469
wl_min, 471
wl_range, 472
wl_stepsize, 473

*.generic_spct (times-.generic_spct),
421

+.generic_spct (plus-.generic_spct), 256
-.generic_spct (minus-.generic_spct),

226
/.generic_spct (slash-.generic_spct),

337
[.chroma_spct (Extract), 126
[.cps_spct (Extract), 126
[.filter_spct (Extract), 126
[.generic_mspct (Extract_mspct), 128
[.generic_spct (Extract), 126
[.object_spct (Extract), 126
[.raw_spct (Extract), 126
[.reflector_spct (Extract), 126
[.response_spct (Extract), 126
[.solute_spct (Extract), 126

[.source_spct (Extract), 126
[<-.generic_mspct (Extract_mspct), 128
[<-.generic_spct (Extract), 126
[[<-.generic_mspct (Extract_mspct), 128
$<-.generic_mspct (Extract_mspct), 128
$<-.generic_spct (Extract), 126
%/%.generic_spct (div-.generic_spct),

110
%%.generic_spct (mod-.generic_spct), 226
^.generic_spct, 91, 110, 221, 223, 226, 256,

308, 336, 337, 421, 476

A.illuminant.spct, 10, 59, 63, 80, 95, 187,
220, 251, 252, 374, 378, 379, 435,
451, 462

A2T, 11, 22, 23, 56, 115, 116, 265, 402, 404
A_as_default (energy_as_default), 117
abs.generic_spct (MathFun), 223
absorbance, 12, 240
absorptance, 15
acos.generic_spct (Trig), 424
add_attr2tb, 14, 17, 18, 121, 130, 133, 137,

140, 143, 153, 168, 170–172, 177,
180, 181, 183, 184, 190, 200, 209,
210, 267, 270, 273, 276, 279, 283,
288, 293, 295, 300, 303, 309, 312,
317, 319, 320, 328, 332, 334, 335,
348, 349, 408, 412, 415, 423, 425,
426

address2tb (add_attr2tb), 18
Afr2T, 12, 21, 23, 56, 115, 116, 265, 402, 404
Afr_as_default (energy_as_default), 117
any2A (any2T), 23
any2Afr (any2T), 23
any2T, 12, 22, 23, 56, 115, 116, 265, 402, 404
as.calibration_mspct, 24, 27, 29, 32, 35,

38, 41, 44, 46, 49, 53, 359, 368
as.calibration_spct, 25, 28, 30, 33, 36, 39,

42, 45, 47, 51, 54, 347
as.chroma_mspct, 25, 26, 29, 32, 35, 38, 41,

44, 46, 49, 53, 359, 368
as.chroma_spct, 26, 27, 30, 33, 36, 39, 42,

45, 47, 51, 54, 347
as.cps_mspct, 25, 27, 28, 32, 35, 38, 41, 44,

46, 49, 53, 359, 368
as.cps_spct, 26, 28, 29, 33, 36, 39, 42, 45,

47, 51, 54, 347
as.filter_mspct, 25, 27, 29, 30, 35, 38, 41,

44, 46, 49, 53, 359, 368

INDEX 481

as.filter_spct, 26, 28, 30, 32, 36, 39, 42,
45, 47, 51, 54, 347

as.generic_mspct, 25, 27, 29, 32, 33, 38, 41,
44, 46, 49, 53, 359, 368

as.generic_spct, 26, 28, 30, 33, 36, 39, 42,
45, 47, 51, 54, 347

as.matrix-mspct, 36
as.matrix.generic_mspct

(as.matrix-mspct), 36
as.object_mspct, 25, 27, 29, 32, 35, 37, 41,

44, 46, 49, 53, 359, 368
as.object_spct, 26, 28, 30, 33, 36, 39, 42,

45, 47, 51, 54, 347
as.raw_mspct, 25, 27, 29, 32, 35, 38, 40, 44,

46, 49, 53, 359, 368
as.raw_spct, 26, 28, 30, 33, 36, 39, 41, 45,

47, 51, 54, 347
as.reflector_mspct, 25, 27, 29, 32, 35, 38,

41, 42, 46, 49, 53, 359, 368
as.reflector_spct, 26, 28, 30, 33, 36, 39,

42, 44, 47, 51, 54, 347
as.response_mspct, 25, 27, 29, 32, 35, 38,

41, 44, 45, 49, 53, 359, 368
as.response_spct, 26, 28, 30, 33, 36, 39, 42,

45, 46, 51, 54, 347
as.solar_date, 47, 207, 259, 341
as.solute_mspct, 25, 27, 29, 32, 35, 38, 41,

44, 46, 48, 53, 359, 368
as.solute_spct, 26, 28, 30, 33, 36, 39, 42,

45, 47, 50, 54, 347
as.source_mspct, 25, 27, 29, 32, 35, 38, 41,

44, 46, 49, 51, 359, 368
as.source_spct, 26, 28, 30, 33, 36, 39, 42,

45, 47, 51, 53, 347
as_energy, 55, 56, 61, 111, 118, 120, 191,

193, 196, 202, 243, 253–255, 262,
361, 364, 369, 373, 380, 430, 449,
450

as_quantum, 12, 22, 23, 55, 115, 116, 265,
402, 404

as_quantum_mol, 55, 56, 61, 111, 118, 120,
191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

as_tod, 57, 154, 260, 341
asin.generic_spct (Trig), 424
atan.generic_spct (Trig), 424
average_spct, 58

beesxyzCMF.spct, 58, 69–73, 87
black_body.spct, 11, 59, 63, 80, 95, 187,

220, 251, 252, 374, 378, 379, 435,
451, 462

BSWF_used2tb (add_attr2tb), 18

c, 60
calc_filter_multipliers (defunct), 100
calc_multipliers, 55, 56, 60, 111, 118, 120,

191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

calc_source_output, 61
calibration_mspct (generic_mspct), 166
calibration_spct (source_spct), 341
ccd.spct, 11, 59, 62, 80, 95, 187, 220, 251,

252, 374, 378, 379, 435, 451, 462
ceiling.generic_spct (round), 307
check_spct, 64, 68, 116, 315
check_spectrum, 67, 67, 68, 116, 361, 363,

364
check_w.length, 67, 68, 68, 116
checkTimeUnit, 63, 89, 90, 179, 331
chroma_mspct (generic_mspct), 166
chroma_spct (source_spct), 341
ciev10.spct, 59, 69, 70–73, 87
ciev2.spct, 59, 69, 69, 71–73, 87
ciexyzCC10.spct, 59, 69, 70, 70, 72, 73, 87
ciexyzCC2.spct, 59, 69–71, 71, 73, 87
ciexyzCMF10.spct, 59, 69–72, 72, 73, 87
ciexyzCMF2.spct, 59, 69–73, 73, 87
class_spct, 74
clean, 74
clear.spct, 11, 59, 63, 79, 95, 187, 220, 251,

252, 374, 378, 379, 435, 451, 462
clear_body.spct (black_body.spct), 59
clip_wl, 80, 428, 431, 434
col2rgb, 380, 475
collect2mspct, 81, 113, 420, 437
color (color_of), 83
color_of, 83
colour_of (color_of), 83
comment2tb (add_attr2tb), 18
compare_spct, 85
cone_fundamentals10.mspct

(cone_fundamentals10.spct), 86
cone_fundamentals10.spct, 59, 69–73, 86
convertTfrType, 88, 89, 330
convertThickness, 64, 89, 90, 179, 331

482 INDEX

convertTimeUnit, 64, 89, 90, 179, 331
convolve_each, 91, 110, 221, 223, 226, 256,

308, 336, 337, 421, 476
copy_attributes, 91
cor, 400
cos.generic_spct (Trig), 424
cps2irrad, 92
cps2Rfr (cps2irrad), 92
cps2Tfr (cps2irrad), 92
cps_mspct (generic_mspct), 166
cps_spct (source_spct), 341

D2.UV586 (D2.UV653), 93
D2.UV653, 93
D2.UV654 (D2.UV653), 93
D2_spectrum, 93, 94
D65.illuminant.spct, 11, 59, 63, 80, 95,

187, 220, 251, 252, 374, 378, 379,
435, 451, 462

day_length (day_night), 96
day_night, 96, 154, 376
day_night_fast (day_night), 96
defunct, 100
despike, 101
diffraction_double_slit

(diffraction_single_slit), 108
diffraction_single_slit, 108
dim.generic_mspct, 109
dim<-.generic_mspct

(dim.generic_mspct), 109
disable_check_spct (enable_check_spct),

116
distance_to_sun (sun_angles), 374
div-.generic_spct, 110
div_spectra, 55, 56, 61, 110, 118, 120, 191,

193, 196, 202, 243, 253–255, 262,
361, 364, 369, 373, 380, 430, 449,
450

drop_user_cols, 82, 112, 420, 437

e2q, 12, 22, 23, 56, 113, 115, 116, 265, 402,
404

e2qmol_multipliers, 12, 22, 23, 56, 115,
115, 116, 265, 402, 404

e2quantum_multipliers, 12, 22, 23, 56, 115,
115, 265, 402, 404

e_fluence, 129, 137, 153, 201, 271, 277
e_fraction, 122, 131, 141, 268, 274, 281
e_irrad, 131, 135, 153, 201, 271, 277

e_ratio, 122, 134, 138, 268, 274, 281
e_response, 141, 283, 294
enable_check_spct, 67, 68, 116, 315
energy2wl (wl2wavenumber), 462
energy_as_default, 117
energy_irradiance, 55, 56, 61, 111, 117,

120, 191, 193, 196, 202, 243,
253–255, 262, 361, 364, 369, 373,
380, 430, 449, 450

energy_ratio, 55, 56, 61, 111, 118, 119, 191,
193, 196, 202, 243, 253–255, 262,
361, 364, 369, 373, 380, 430, 449,
450

eq_ratio, 120, 134, 141, 268, 274, 281
ET_ref, 123, 232
ET_ref_day (ET_ref), 123
exp.generic_spct (log), 220
expanse (spread), 364
extend2extremes (trim_spct), 427
Extract, 126, 127, 128
Extract_mspct, 128
Extremes, 392

f_mspct (defunct), 100
fast_color_of_wb (color_of), 83
fast_color_of_wl (color_of), 83
fast_wb2rect_spct (wb2rect_spct), 458
FEL.BN.9101.165 (D2.UV653), 93
FEL_spectrum, 93, 144
filter_cps.mspct, 11, 59, 63, 80, 95, 187,

220, 251, 252, 374, 378, 379, 435,
451, 462

filter_mspct (generic_mspct), 166
filter_properties

(getFilterProperties), 167
filter_properties2tb (add_attr2tb), 18
filter_properties<-

(setFilterProperties), 310
filter_spct, 89, 330
filter_spct (source_spct), 341
find_peaks, 145, 147, 186, 250, 291, 356,

420, 448, 468
find_spikes, 107, 146, 146, 186, 250, 291,

356, 448, 468
find_wls, 148
findMultipleWl, 145, 321
fit_peaks, 149
fit_valleys (fit_peaks), 149
floor.generic_spct (round), 307

INDEX 483

fluence, 131, 137, 151, 201, 271, 277
format, 155, 370
format.solar_time, 99, 154, 376
format.tod_time, 57, 154, 260
formatted_range, 155
formatting, 260
frequency2wl (wl2wavenumber), 462
fscale, 155, 165, 175, 176, 213, 215, 239,

323, 327
fshift, 161, 161, 175, 176, 213, 215, 239,

323, 327

generic_mspct, 166
generic_spct (source_spct), 341
geocode2tb (add_attr2tb), 18
get_attributes, 20, 168, 170–172, 177, 180,

181, 183, 183, 209, 210, 309, 312,
317, 319, 320, 328, 332, 334, 335,
348, 349, 425, 426

get_peaks, 146, 147, 185, 250, 291, 356, 448,
468

get_valleys (get_peaks), 185
getAfrType (defunct), 100
getBSWFUsed (setBSWFUsed), 309
getFilterProperties, 20, 167, 170–172,

177, 180, 181, 183, 184, 209, 210,
309, 312, 317, 319, 320, 328, 332,
334, 335, 348, 349, 425, 426

getHowMeasured, 20, 168, 169, 171, 172, 177,
180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

getIdFactor, 170, 318
getInstrDesc, 20, 168, 170, 171, 172, 177,

180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

getInstrSettings, 20, 168, 170, 171, 171,
177, 180, 181, 183, 184, 209, 210,
309, 312, 317, 319, 320, 328, 332,
334, 335, 348, 349, 425, 426

getKType, 172, 321
getMspctVersion, 173
getMultipleWl, 173, 321
getNormalisation (getNormalized), 174
getNormalised (getNormalized), 174
getNormalization (getNormalized), 174
getNormalized, 161, 165, 174, 176, 213, 215,

239, 323, 327

getResponseType (setResponseType), 323
getRfrType (setRfrType), 324
getScaled, 161, 165, 175, 175, 213, 215, 239,

323, 327
getScaling (getScaled), 175
getSoluteProperties, 20, 168, 170–172,

176, 180, 181, 183, 184, 209, 210,
309, 312, 317, 319, 320, 328, 332,
334, 335, 348, 349, 425, 426

getSpctVersion, 178
getTfrType (setTfrType), 329
getTimeUnit, 64, 89, 90, 178, 331
getWhatMeasured, 20, 168, 170–172, 177,

179, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

getWhenMeasured, 20, 168, 170–172, 177,
180, 180, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

getWhereMeasured, 20, 168, 170–172, 177,
180, 181, 182, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

green_leaf.spct, 11, 59, 63, 80, 95, 186,
220, 251, 252, 374, 378, 379, 435,
451, 462

head, 188
head_tail, 187
how_measured (getHowMeasured), 169
how_measured2tb (add_attr2tb), 18
how_measured<- (setHowMeasured), 316

id_factor (getIdFactor), 170
id_factor<- (setIdFactor), 317
illuminance, 189
insert_hinges, 55, 56, 61, 111, 118, 120,

191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

insert_spct_hinges, 192
instr_desc2tb (add_attr2tb), 18
instr_descriptor (getInstrDesc), 171
instr_descriptor<- (setInstrDesc), 318
instr_settings (getInstrSettings), 171
instr_settings2tb (add_attr2tb), 18
instr_settings<- (setInstrSettings), 319
integrate_spct, 192

484 INDEX

integrate_xy, 55, 56, 61, 111, 118, 120, 191,
193, 196, 202, 243, 253–255, 262,
361, 364, 369, 373, 380, 430, 449,
450

interpolate_mspct (interpolate_spct),
194

interpolate_spct, 194
interpolate_spectrum, 55, 56, 61, 111, 118,

120, 191, 193, 195, 202, 243,
253–255, 262, 361, 364, 369, 373,
380, 430, 449, 450

interpolate_wl, 196
irrad, 131, 137, 153, 198, 271, 277
irrad_extraterrestrial, 203
irradiance, 55, 56, 61, 111, 118, 120, 191,

193, 196, 201, 240, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

is.any_mspct (is.generic_mspct), 204
is.any_spct (is.generic_spct), 205
is.any_summary_spct

(is.summary_generic_spct), 207
is.calibration_mspct

(is.generic_mspct), 204
is.calibration_spct (is.generic_spct),

205
is.chroma_mspct (is.generic_mspct), 204
is.chroma_spct (is.generic_spct), 205
is.cps_mspct (is.generic_mspct), 204
is.cps_spct (is.generic_spct), 205
is.filter_mspct (is.generic_mspct), 204
is.filter_spct (is.generic_spct), 205
is.generic_mspct, 204
is.generic_spct, 205
is.object_mspct (is.generic_mspct), 204
is.object_spct (is.generic_spct), 205
is.old_spct, 206, 439
is.raw_mspct (is.generic_mspct), 204
is.raw_spct (is.generic_spct), 205
is.reflector_mspct (is.generic_mspct),

204
is.reflector_spct (is.generic_spct), 205
is.response_mspct (is.generic_mspct),

204
is.response_spct (is.generic_spct), 205
is.solar_date (is.solar_time), 207
is.solar_time, 47, 207, 259, 341
is.solute_mspct (is.generic_mspct), 204

is.solute_spct (is.generic_spct), 205
is.source_mspct (is.generic_mspct), 204
is.source_spct (is.generic_spct), 205
is.summary_chroma_spct

(is.summary_generic_spct), 207
is.summary_cps_spct

(is.summary_generic_spct), 207
is.summary_filter_spct

(is.summary_generic_spct), 207
is.summary_generic_spct, 207
is.summary_object_spct

(is.summary_generic_spct), 207
is.summary_raw_spct

(is.summary_generic_spct), 207
is.summary_reflector_spct

(is.summary_generic_spct), 207
is.summary_response_spct

(is.summary_generic_spct), 207
is.summary_solute_spct

(is.summary_generic_spct), 207
is.summary_source_spct

(is.summary_generic_spct), 207
is.waveband, 208
is_absorbance_based, 210, 212, 214
is_absorptance_based

(is_absorbance_based), 210
is_daytime (day_night), 96
is_effective, 211, 218, 233
is_energy_based (is_photon_based), 214
is_mass_based (is_mole_based), 212
is_mole_based, 210, 212, 214
is_normalised (is_normalized), 213
is_normalized, 161, 165, 175, 176, 213, 215,

239, 323, 327
is_photon_based, 210, 212, 214
is_scaled, 161, 165, 175, 176, 213, 215, 239,

323, 327
is_tagged, 215, 406, 438, 459–461
is_transmittance_based

(is_absorbance_based), 210
is_valid_geocode (validate_geocode), 440
isValidInstrDesc, 20, 168, 170–172, 177,

180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

isValidInstrSettings, 20, 168, 170–172,
177, 180, 181, 183, 184, 209, 209,
309, 312, 317, 319, 320, 328, 332,

INDEX 485

334, 335, 348, 349, 425, 426

join, 224
join_mspct, 216

l_insert_hinges, 55, 56, 61, 111, 118, 120,
191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

labels, 212, 218, 233
lat2tb (add_attr2tb), 18
length_geocode (validate_geocode), 440
Ler_leaf.spct, 11, 59, 63, 80, 95, 187, 219,

251, 252, 374, 378, 379, 435, 451,
462

Ler_leaf_rflt.spct (Ler_leaf.spct), 219
Ler_leaf_trns.spct (Ler_leaf.spct), 219
Ler_leaf_trns_i.spct (Ler_leaf.spct),

219
log, 91, 110, 220, 223, 226, 256, 308, 336,

337, 421, 476
log10.generic_spct (log), 220
log2.generic_spct (log), 220
lon2tb (add_attr2tb), 18
lonlat2tb (add_attr2tb), 18

make.names, 217
make_var_labels, 221
mat2mspct (as.generic_mspct), 33
MathFun, 91, 110, 221, 223, 226, 256, 308,

336, 337, 421, 476
max, 365, 470
max (wl_max), 468
mean, 382, 384, 386
median, 388
merge2object_spct, 224
merge_attributes, 225
midpoint (wl_midpoint), 469
min, 365, 470
min (wl_min), 471
minus-.generic_spct, 226
mod-.generic_spct, 226
msaply (msmsply), 227
msdply (msmsply), 227
mslply (msmsply), 227
msmsply, 227
mspct2mat (as.matrix-mspct), 36
mspct_classes, 228
multiple_wl (getMultipleWl), 173

multiple_wl<- (setMultipleWl), 321
mutate_mspct (defunct), 100

NA, 155
na.action, 230
na.exclude.chroma_spct (na.omit), 228
na.exclude.cps_spct (na.omit), 228
na.exclude.filter_spct (na.omit), 228
na.exclude.generic_mspct (na.omit), 228
na.exclude.generic_spct (na.omit), 228
na.exclude.object_spct (na.omit), 228
na.exclude.raw_spct (na.omit), 228
na.exclude.reflector_spct (na.omit), 228
na.exclude.response_spct (na.omit), 228
na.exclude.solute_spct (na.omit), 228
na.exclude.source_spct (na.omit), 228
na.fail, 230
na.omit, 228
na_geocode (validate_geocode), 440
NDxI (normalized_diff_ind), 239
net_irradiance, 124, 231
new_waveband (waveband), 455
night_length (day_night), 96
noon_time (day_night), 96
normalise (normalize), 233
normalised_diff_ind

(normalized_diff_ind), 239
normalization, 212, 218, 232
normalize, 161, 165, 175, 176, 213, 215, 233,

323, 327
normalize_range_arg, 241
normalized2tb (add_attr2tb), 18
normalized_diff_ind, 239, 301, 413

object_mspct (generic_mspct), 166
object_spct, 325, 330
object_spct (source_spct), 341
opaque.spct (clear.spct), 79
oper_spectra, 55, 56, 61, 111, 118, 120, 191,

193, 196, 202, 242, 253–255, 262,
361, 364, 369, 373, 380, 430, 449,
450

paste, 155
peaks, 146, 147, 186, 243, 291, 356, 448, 468
phenylalanine.spct, 11, 59, 63, 80, 95, 187,

220, 250, 252, 374, 378, 379, 435,
451, 462

photobiology (photobiology-package), 8

486 INDEX

photobiology-package, 8
photodiode.spct, 11, 59, 63, 80, 95, 187,

220, 251, 251, 374, 378, 379, 435,
451, 462

photon_as_default (energy_as_default),
117

photon_irradiance, 55, 56, 61, 111, 118,
120, 191, 193, 196, 202, 243, 253,
253, 255, 262, 361, 364, 369, 373,
380, 430, 449, 450

photon_ratio, 55, 56, 61, 111, 118, 120, 191,
193, 196, 202, 243, 253, 254, 254,
262, 361, 364, 369, 373, 380, 430,
449, 450

photons_energy_ratio, 55, 56, 61, 111, 118,
120, 191, 193, 196, 202, 243, 252,
254, 255, 262, 361, 364, 369, 373,
380, 430, 449, 450

plus-.generic_spct, 256
polyester.spct (two_filters.spct), 434
print.filter_properties

(print.metadata), 258
print.generic_mspct

(print.generic_spct), 256
print.generic_spct, 256
print.instr_desc (print.metadata), 258
print.instr_settings (print.metadata),

258
print.metadata, 258
print.solar_date (print.solar_time), 259
print.solar_time, 47, 207, 259, 341
print.solute_properties

(print.metadata), 258
print.summary_generic_mspct

(print.summary_generic_spct),
259

print.summary_generic_spct, 259, 370
print.tod_time, 57, 154, 260
print.waveband, 261
prod, 390
prod_spectra, 55, 56, 61, 111, 118, 120, 191,

193, 196, 202, 243, 253–255, 261,
361, 364, 369, 373, 380, 430, 449,
450

psychrometric_constant (water_vp_sat),
451

pull_sample, 262

q2e, 12, 22, 23, 56, 115, 116, 264, 402, 404

q_fluence, 131, 137, 153, 201, 268, 277
q_fraction, 122, 134, 141, 268, 271, 281
q_irrad, 131, 137, 153, 201, 271, 274
q_ratio, 122, 134, 141, 268, 274, 278
q_response, 144, 281, 294
qe_ratio, 122, 134, 141, 266, 274, 281
quantum_as_default (energy_as_default),

117

r4p_pkgs, 284
range, 155
range (wl_range), 472
raw_mspct (generic_mspct), 166
raw_spct (source_spct), 341
rbindspct, 284
reflectance, 240, 286
reflector_mspct (generic_mspct), 166
reflector_spct, 325
reflector_spct (source_spct), 341
relative_AM, 289
replace_bad_pixs, 107, 146, 147, 186, 250,

290, 356, 448, 468
response, 144, 240, 283, 291
response_mspct (generic_mspct), 166
response_spct (source_spct), 341
Rfr_fraction, 294, 301, 305
Rfr_from_n, 297
Rfr_normdiff, 241, 297, 298, 305
Rfr_p_from_n (Rfr_from_n), 297
Rfr_ratio, 297, 301, 302
Rfr_s_from_n (Rfr_from_n), 297
Rfr_type2tb (add_attr2tb), 18
rgb, 380
rgb_spct, 305, 474, 475
rmDerivedMspct, 306, 336
rmDerivedSpct, 306, 316
round, 91, 110, 221, 223, 226, 256, 307, 336,

337, 421, 476

s_e_irrad2rgb, 55, 56, 61, 111, 118, 120,
191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 379, 430,
449, 450

s_mean, 380
s_mean_se, 382
s_mean_se_band, 384
s_median, 386
s_prod, 388
s_range, 390

INDEX 487

s_sd, 392
s_se, 394
s_sum, 396
s_var, 398
sample, 264
sample_mspct (defunct), 100
sample_spct (defunct), 100
scaled2tb (add_attr2tb), 18
sd, 394
se, 384
select_spct_attributes, 20, 168, 170–172,

177, 180, 181, 183, 184, 209, 210,
308, 312, 317, 319, 320, 328, 332,
334, 335, 348, 349, 425, 426

set_check_spct (enable_check_spct), 116
setAfrType (defunct), 100
setBSWFUsed, 309
setCalibrationSpct (setGenericSpct), 312
setChromaSpct (setGenericSpct), 312
setCpsSpct (setGenericSpct), 312
setFilterProperties, 20, 168, 170–172,

177, 180, 181, 183, 184, 209, 210,
309, 310, 317, 319, 320, 328, 332,
334, 335, 347–349, 425, 426

setFilterSpct (setGenericSpct), 312
setGenericSpct, 26, 28, 30, 33, 36, 39, 42,

45, 47, 54, 307, 312
setHowMeasured, 20, 168, 170–172, 177, 180,

181, 183, 184, 209, 210, 309, 312,
316, 319, 320, 328, 332, 334, 335,
348, 349, 425, 426

setIdFactor, 170, 317
setInstrDesc, 20, 168, 170–172, 177, 180,

181, 183, 184, 209, 210, 309, 312,
317, 318, 320, 328, 332, 334, 335,
348, 349, 425, 426

setInstrSettings, 20, 168, 170–172, 177,
180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 319, 328, 332, 334,
335, 348, 349, 425, 426

setKType, 172, 320
setMultipleWl, 174, 321
setNormalised (setNormalized), 322
setNormalized, 161, 165, 174–176, 213, 215,

239, 322, 327
setObjectSpct (setGenericSpct), 312
setRawSpct (setGenericSpct), 312
setReflectorSpct (setGenericSpct), 312

setResponseSpct (setGenericSpct), 312
setResponseType, 323
setRfrType, 324
setScaled, 161, 165, 175, 176, 213, 215, 239,

323, 326
setSoluteProperties, 20, 168, 170–172,

177, 180, 181, 183, 184, 209, 210,
309, 312, 317, 319, 320, 327, 332,
334, 335, 347–349, 425, 426

setSoluteSpct, 51
setSoluteSpct (setGenericSpct), 312
setSourceSpct (setGenericSpct), 312
setTfrType, 89, 329
setTimeUnit, 64, 89, 90, 179, 331
setWhatMeasured, 20, 168, 170–172, 177,

180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

setWhenMeasured, 20, 168, 170–172, 177,
180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 333,
335, 348, 349, 425, 426

setWhereMeasured, 20, 168, 170–172, 177,
180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
334, 348, 349, 425, 426

shared_member_class, 306, 336
sign, 91, 110, 221, 223, 226, 256, 308, 336,

337, 421, 476
signif.generic_spct (round), 307
sin.generic_spct (Trig), 424
slash-.generic_spct, 337
smooth_spct, 337
solar_time, 47, 57, 207, 259, 340
solute_mspct (generic_mspct), 166
solute_properties

(getSoluteProperties), 176
solute_properties2tb (add_attr2tb), 18
solute_properties<-

(setSoluteProperties), 327
solute_spct (source_spct), 341
source_mspct (generic_mspct), 166
source_spct, 26, 28, 30, 33, 36, 39, 42, 45,

47, 51, 54, 341
spct_attr2tb, 20, 168, 170–172, 177, 180,

181, 183, 184, 209, 210, 309, 312,
317, 319, 320, 328, 332, 334, 335,
347, 349, 425, 426

488 INDEX

spct_attributes
(select_spct_attributes), 308

spct_classes, 74, 348
spct_metadata, 20, 168, 170–172, 177, 180,

181, 183, 184, 209, 210, 309, 312,
317, 319, 320, 328, 332, 334, 335,
348, 348, 425, 426

spct_wide2long, 350
spikes, 146, 147, 186, 250, 291, 351, 448, 468
splinefun, 196
split2calibration_mspct (split2mspct),

356
split2cps_mspct (split2mspct), 356
split2filter_mspct (split2mspct), 356
split2mspct, 25, 27, 29, 32, 35, 38, 41, 44,

46, 49, 53, 356, 368
split2raw_mspct (split2mspct), 356
split2reflector_mspct (split2mspct), 356
split2response_mspct (split2mspct), 356
split2solute_mspct (split2mspct), 356
split2source_mspct (split2mspct), 356
split_bands, 359, 456
split_energy_irradiance, 55, 56, 61, 111,

118, 120, 191, 193, 196, 202, 243,
253–255, 262, 360, 364, 369, 373,
380, 430, 449, 450

split_irradiance, 362
split_photon_irradiance, 55, 56, 61, 111,

118, 120, 191, 193, 196, 202, 243,
253–255, 262, 361, 363, 369, 373,
380, 430, 449, 450

spread, 364
sqrt.generic_spct (MathFun), 223
stepsize (wl_stepsize), 473
strict_range_as_default

(verbose_as_default), 448
Subset, 366
subset, 127
subset.generic_spct (Subset), 366
subset2mspct, 25, 27, 29, 32, 35, 38, 41, 44,

46, 49, 53, 359, 367
subset_attributes, 20, 168, 170–172, 177,

180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

subt_spectra, 55, 56, 61, 111, 118, 120, 191,
193, 196, 202, 243, 253–255, 262,
361, 364, 368, 373, 380, 430, 449,

450
sum, 398
sum_spectra, 55, 56, 61, 111, 118, 120, 191,

193, 196, 202, 243, 253–255, 262,
361, 364, 369, 372, 380, 430, 449,
450

summary.generic_mspct
(summary.generic_spct), 369

summary.generic_spct, 369
summary_spct_classes, 371
sun.daily.data (sun_daily.spct), 377
sun.daily.spct (sun_daily.spct), 377
sun.data (sun.spct), 373
sun.spct, 11, 59, 63, 80, 95, 187, 220, 251,

252, 373, 378, 379, 435, 451, 462
sun_angles, 99, 154, 203, 374
sun_angles_fast (sun_angles), 374
sun_azimuth (sun_angles), 374
sun_daily.data (sun_daily.spct), 377
sun_daily.spct, 11, 59, 63, 80, 95, 187, 220,

251, 252, 374, 377, 379, 435, 451,
462

sun_elevation (sun_angles), 374
sun_evening.mspct (sun_evening.spct),

378
sun_evening.spct, 11, 59, 63, 80, 95, 187,

220, 251, 252, 374, 378, 378, 435,
451, 462

sun_zenith_angle (sun_angles), 374
sunrise_time (day_night), 96
sunset_time (day_night), 96
Sys.timezone, 436

T2A, 12, 22, 23, 56, 115, 116, 265, 400, 404
T2Afr, 12, 22, 23, 56, 115, 116, 265, 402, 402
T2T (defunct), 100
tag, 86, 216, 404, 438, 459–461
tan.generic_spct (Trig), 424
Tfr_as_default (energy_as_default), 117
Tfr_fraction, 406, 413, 416
Tfr_normdiff, 409, 410, 416
Tfr_ratio, 409, 413, 413
Tfr_type2tb (add_attr2tb), 18
thin_wl, 82, 113, 417, 437
time_unit2tb (add_attr2tb), 18
times-.generic_spct, 421
transmittance, 240, 421
Trig, 424
trim2overlap (trim_spct), 427

INDEX 489

trim_mspct (trim_spct), 427
trim_spct, 81, 127, 427, 431, 434
trim_tails, 55, 56, 61, 111, 118, 120, 191,

193, 196, 202, 243, 253–255, 262,
361, 364, 369, 373, 380, 429, 449,
450

trim_waveband, 81, 428, 430, 434
trim_wl, 81, 428, 431, 432
trimInstrDesc, 20, 168, 170–172, 177, 180,

181, 183, 184, 209, 210, 309, 312,
317, 319, 320, 328, 332, 334, 335,
348, 349, 425, 426

trimInstrSettings, 20, 168, 170–172, 177,
180, 181, 183, 184, 209, 210, 309,
312, 317, 319, 320, 328, 332, 334,
335, 348, 349, 425, 426

trunc.generic_spct (round), 307
two_filters.mspct (two_filters.spct),

434
two_filters.spct, 11, 59, 63, 80, 95, 187,

220, 251, 252, 374, 378, 379, 434,
451, 462

tz_time_diff, 435

uncollect2spct, 82, 113, 420, 436
unset_filter_qty_default

(energy_as_default), 117
unset_radiation_unit_default

(energy_as_default), 117
unset_user_defaults

(energy_as_default), 117
untag, 216, 406, 437, 459–461
upgrade_spct, 206, 438, 439
upgrade_spectra, 206, 439, 439
use_cached_mult_as_default

(wb_trim_as_default), 461
using_A (using_Tfr), 439
using_Afr (using_Tfr), 439
using_energy (using_Tfr), 439
using_photon (using_Tfr), 439
using_quantum (using_Tfr), 439
using_Tfr, 439

v_insert_hinges, 55, 56, 61, 111, 118, 120,
191, 193, 196, 202, 243, 253–255,
262, 361, 364, 369, 373, 380, 430,
449, 450

v_replace_hinges, 55, 56, 61, 111, 118, 120,
191, 193, 196, 202, 243, 253–255,

262, 361, 364, 369, 373, 380, 430,
449, 449

validate_geocode, 440
valleys, 146, 147, 186, 250, 291, 356, 441,

468
verbose_as_default, 448

w_length2rgb, 305, 474, 475
w_length_range2rgb, 305, 474, 475
water.spct, 11, 59, 63, 80, 95, 187, 220, 251,

252, 374, 378, 379, 435, 450, 462
water_dp (water_vp_sat), 451
water_fp (water_vp_sat), 451
water_mvc2vp (water_vp_sat), 451
water_RH2vp (water_vp_sat), 451
water_vp2mvc (water_vp_sat), 451
water_vp2RH (water_vp_sat), 451
water_vp_sat, 451
water_vp_sat_slope (water_vp_sat), 451
waveband, 84, 233, 360, 455
waveband_ratio, 457
wavenumber2wl (wl2wavenumber), 462
wb2rect_spct, 216, 406, 438, 458, 460, 461
wb2spct, 216, 406, 438, 459, 459, 461
wb2tagged_spct, 216, 406, 438, 459, 460, 460
wb_trim_as_default, 461
what_measured (getWhatMeasured), 179
what_measured2tb (add_attr2tb), 18
what_measured<- (setWhatMeasured), 332
when_measured (getWhenMeasured), 180
when_measured2tb (add_attr2tb), 18
when_measured<- (setWhenMeasured), 333
where_measured (getWhereMeasured), 182
where_measured<- (setWhereMeasured), 334
white_body.spct (black_body.spct), 59
white_led.cps_spct

(white_led.source_spct), 461
white_led.raw_spct

(white_led.source_spct), 461
white_led.source_spct, 11, 59, 63, 80, 95,

187, 220, 251, 252, 374, 378, 379,
435, 451, 461

wl2energy (wl2wavenumber), 462
wl2frequency (wl2wavenumber), 462
wl2wavenumber, 462
wl_expanse (spread), 364
wl_max, 468
wl_midpoint, 469, 471, 472, 474
wl_min, 470, 471, 472, 474

490 INDEX

wl_range, 470, 471, 472, 474
wl_stepsize, 470–472, 473
wls_at_target, 146, 147, 186, 250, 291, 356,

448, 464

yellow_gel.spct (two_filters.spct), 434

	photobiology-package
	A.illuminant.spct
	A2T
	absorbance
	absorptance
	add_attr2tb
	Afr2T
	any2T
	as.calibration_mspct
	as.calibration_spct
	as.chroma_mspct
	as.chroma_spct
	as.cps_mspct
	as.cps_spct
	as.filter_mspct
	as.filter_spct
	as.generic_mspct
	as.generic_spct
	as.matrix-mspct
	as.object_mspct
	as.object_spct
	as.raw_mspct
	as.raw_spct
	as.reflector_mspct
	as.reflector_spct
	as.response_mspct
	as.response_spct
	as.solar_date
	as.solute_mspct
	as.solute_spct
	as.source_mspct
	as.source_spct
	as_energy
	as_quantum
	as_quantum_mol
	as_tod
	average_spct
	beesxyzCMF.spct
	black_body.spct
	c
	calc_multipliers
	calc_source_output
	ccd.spct
	checkTimeUnit
	check_spct
	check_spectrum
	check_w.length
	ciev10.spct
	ciev2.spct
	ciexyzCC10.spct
	ciexyzCC2.spct
	ciexyzCMF10.spct
	ciexyzCMF2.spct
	class_spct
	clean
	clear.spct
	clip_wl
	collect2mspct
	color_of
	compare_spct
	cone_fundamentals10.spct
	convertTfrType
	convertThickness
	convertTimeUnit
	convolve_each
	copy_attributes
	cps2irrad
	D2.UV653
	D2_spectrum
	D65.illuminant.spct
	day_night
	defunct
	despike
	diffraction_single_slit
	dim.generic_mspct
	div-.generic_spct
	div_spectra
	drop_user_cols
	e2q
	e2qmol_multipliers
	e2quantum_multipliers
	enable_check_spct
	energy_as_default
	energy_irradiance
	energy_ratio
	eq_ratio
	ET_ref
	Extract
	Extract_mspct
	e_fluence
	e_fraction
	e_irrad
	e_ratio
	e_response
	FEL_spectrum
	findMultipleWl
	find_peaks
	find_spikes
	find_wls
	fit_peaks
	fluence
	format.solar_time
	format.tod_time
	formatted_range
	fscale
	fshift
	generic_mspct
	getFilterProperties
	getHowMeasured
	getIdFactor
	getInstrDesc
	getInstrSettings
	getKType
	getMspctVersion
	getMultipleWl
	getNormalized
	getScaled
	getSoluteProperties
	getSpctVersion
	getTimeUnit
	getWhatMeasured
	getWhenMeasured
	getWhereMeasured
	get_attributes
	get_peaks
	green_leaf.spct
	head_tail
	illuminance
	insert_hinges
	insert_spct_hinges
	integrate_spct
	integrate_xy
	interpolate_spct
	interpolate_spectrum
	interpolate_wl
	irrad
	irradiance
	irrad_extraterrestrial
	is.generic_mspct
	is.generic_spct
	is.old_spct
	is.solar_time
	is.summary_generic_spct
	is.waveband
	isValidInstrDesc
	isValidInstrSettings
	is_absorbance_based
	is_effective
	is_mole_based
	is_normalized
	is_photon_based
	is_scaled
	is_tagged
	join_mspct
	labels
	Ler_leaf.spct
	log
	make_var_labels
	MathFun
	merge2object_spct
	merge_attributes
	minus-.generic_spct
	mod-.generic_spct
	msmsply
	mspct_classes
	na.omit
	net_irradiance
	normalization
	normalize
	normalized_diff_ind
	normalize_range_arg
	oper_spectra
	peaks
	phenylalanine.spct
	photodiode.spct
	photons_energy_ratio
	photon_irradiance
	photon_ratio
	plus-.generic_spct
	print.generic_spct
	print.metadata
	print.solar_time
	print.summary_generic_spct
	print.tod_time
	print.waveband
	prod_spectra
	pull_sample
	q2e
	qe_ratio
	q_fluence
	q_fraction
	q_irrad
	q_ratio
	q_response
	r4p_pkgs
	rbindspct
	reflectance
	relative_AM
	replace_bad_pixs
	response
	Rfr_fraction
	Rfr_from_n
	Rfr_normdiff
	Rfr_ratio
	rgb_spct
	rmDerivedMspct
	rmDerivedSpct
	round
	select_spct_attributes
	setBSWFUsed
	setFilterProperties
	setGenericSpct
	setHowMeasured
	setIdFactor
	setInstrDesc
	setInstrSettings
	setKType
	setMultipleWl
	setNormalized
	setResponseType
	setRfrType
	setScaled
	setSoluteProperties
	setTfrType
	setTimeUnit
	setWhatMeasured
	setWhenMeasured
	setWhereMeasured
	shared_member_class
	sign
	slash-.generic_spct
	smooth_spct
	solar_time
	source_spct
	spct_attr2tb
	spct_classes
	spct_metadata
	spct_wide2long
	spikes
	split2mspct
	split_bands
	split_energy_irradiance
	split_irradiance
	split_photon_irradiance
	spread
	Subset
	subset2mspct
	subt_spectra
	summary.generic_spct
	summary_spct_classes
	sum_spectra
	sun.spct
	sun_angles
	sun_daily.spct
	sun_evening.spct
	s_e_irrad2rgb
	s_mean
	s_mean_se
	s_mean_se_band
	s_median
	s_prod
	s_range
	s_sd
	s_se
	s_sum
	s_var
	T2A
	T2Afr
	tag
	Tfr_fraction
	Tfr_normdiff
	Tfr_ratio
	thin_wl
	times-.generic_spct
	transmittance
	Trig
	trimInstrDesc
	trimInstrSettings
	trim_spct
	trim_tails
	trim_waveband
	trim_wl
	two_filters.spct
	tz_time_diff
	uncollect2spct
	untag
	upgrade_spct
	upgrade_spectra
	using_Tfr
	validate_geocode
	valleys
	verbose_as_default
	v_insert_hinges
	v_replace_hinges
	water.spct
	water_vp_sat
	waveband
	waveband_ratio
	wb2rect_spct
	wb2spct
	wb2tagged_spct
	wb_trim_as_default
	white_led.source_spct
	wl2wavenumber
	wls_at_target
	wl_max
	wl_midpoint
	wl_min
	wl_range
	wl_stepsize
	w_length2rgb
	w_length_range2rgb
	^.generic_spct
	Index

