This package, is a data only package, part of a suite, which has package ‘photobiology’ at its core. Please visit (https://www.r4photobiology.info/) for more details. For more details on plotting spectra, please consult the documentation for package ‘ggspectra’, and for information on the calculation of summaries and maths operations between spectra, please, consult the documentation for package ‘photobiology’.
library(photobiology)
library(photobiologyWavebands)
library(photobiologyLamps)
library(ggplot2)
library(ggspectra)
In this brief User Guide we describe how to re-scale the normalized spectra, and how to access individual spectra or subsets of spectra.
Spectra in the package are contained in several collections:
lamps.mspct
contains spectral data for various types of
lamps emiiting a fixed color of light, in most cases with a single
spectrum per lamp, and it is the main data container. Separate
collections of spectra contain data for single light sources that have
multiple modes, i.e., built-in dimmers or are capable of adjusting the
spectrum of emitted. Of theses,ledsavers.mspct
contains
spectral data for a household LED bulb with four color channels allowing
it to output 16 different colors of light and
amaran_m9.mspct
, andoer_ir49.mspct
,
elgato_klm_cct.mspct
, elgato_klm_dim.mspct
and
sunwayfoto_fl96.mspct
contain spectra for video and
photography small LED lamps. The output of fluorescent lamps depends
strongly on temperature, and collection
qp_uvb313_temp.mspct
contains spectral data for an UV-B
lamp measured under seven different temperatures. In addition
qp_uvb313_temp.spct
contains the same data in long form (or
tidy) as a single source_spct
object.
In addtion to the objects containing the data themselves, several
character vectors of names of spectra are provide to facilitate the
retrieval of subsets of spectra from lamps.mspct
.
lamps.mspct
The lamps.mspct
collection, an object of class
source_mspct
, contains 66 spectra as member objects of
classsource_spct
. The member spectra of
lamps.mspct
can be accessed through their names or through
a numeric index. As the numeric indexes are likely to change with
updates to the package, their use is discouraged. Names as character
strings should be used instead. They can be listed with method
names()
.
## [1] "Airam.CF.15W.2700K"
## [2] "Airam.CF.Spiraali.14W.3000K"
## [3] "Airam.LED.11W.4000K"
## [4] "Airam.LED.14W.4000K"
## [5] "Airam.LED.9W.3000K"
## [6] "Amaran.M9.LED.video.light.5500K"
## [7] "Convoy.2plus.LED.UVA.flashlight"
## [8] "Eiko.F36T8.BLB"
## [9] "Fluence.LED.AnthoSpec"
## [10] "Fluence.LED.PhysioSpec.BROAD"
## [11] "Fluence.LED.PhysioSpec.BROAD.R3"
## [12] "Fluence.LED.PhysioSpec.BROAD.R6"
## [13] "Fluence.LED.PhysioSpec.BROAD.R9B"
## [14] "Fluence.LED.PhysioSpec.Greenhouse"
## [15] "Fluence.LED.PhysioSpec.Indoor"
## [16] "Generic.germicidal"
## [17] "Generic.Inc.bulb.60W"
## [18] "Generic.LED.9W.mosquito"
## [19] "Generic.LED.NIR.flashlight"
## [20] "Generic.LED.UVA.flashlight"
## [21] "Godox.XeF.AD200.H200.flash"
## [22] "Godox.XeF.AD200.H200j.ADFT200.flash"
## [23] "Godox.XeF.AD200.H200j.FTSTS40w.flash"
## [24] "Godox.XeF.AD200.H200R.flash"
## [25] "Ikea.LED.6.3W.2700K"
## [26] "Jaxman.E2.LED.flashlight"
## [27] "Jaxman.U1c.LED.UVA.flood.flashlight"
## [28] "LCDlighting.FT.UVA.BL"
## [29] "Ledenergie.LED.Nano.T8.9.5W.4000K"
## [30] "Ledenergie.LED.Teho.T8.9W.4000K"
## [31] "Ledstore.LED.10W.4000K"
## [32] "Osram.FT.36W.25"
## [33] "Osram.FT.L36W.840"
## [34] "Osram.FT.L36W.865"
## [35] "Osram.HPS.Super.Vialox"
## [36] "Osram.Inc.20W"
## [37] "Osram.LED.10W.2700K"
## [38] "Osram.LED.8W.2700K"
## [39] "Osram.MH.HQIT.400W"
## [40] "Philips.CF.PLS.11W.927"
## [41] "Philips.FT.TL.40W.01.uv"
## [42] "Philips.FT.TL.40W.12"
## [43] "Philips.FT.TL.40W.12.uv"
## [44] "Philips.FT.TL5.35W.830.HE"
## [45] "Philips.FT.TLD.36W.15"
## [46] "Philips.FT.TLD.36W.18"
## [47] "Philips.FT.TLD.36W.18.lores"
## [48] "Philips.FT.TLD.36W.83"
## [49] "Philips.FT.TLD.36W.89"
## [50] "Philips.FT.TLD.36W.92"
## [51] "Philips.FT.TLD.36W.965"
## [52] "Philips.FT.TLD.36W.BLB.108"
## [53] "Philips.FT.TLL.36W.950"
## [54] "Philips.Inc.50W.spot.halogen"
## [55] "Philips.LED.T8.10W.840"
## [56] "QPanel.FT.UVB313.40W"
## [57] "QPanel.FT.UVB340.40W"
## [58] "Sunwayfoto.LED.FL96.at.3000K"
## [59] "Sunwayfoto.LED.FL96.at.4000K"
## [60] "Sunwayfoto.LED.FL96.at.5500K"
## [61] "Sylvania.FT.215W.VHO"
## [62] "Toshiba.LED.12W.2700K"
## [63] "Toshiba.LED.9.5W.2700K"
## [64] "V.light.LED.2W.6000K"
## [65] "Valoya.LED.B50.AP67.grow.lamp"
## [66] "Valoya.LED.RX600HW.Solray385.grow.lamp"
We can use a name as index to extract an individual
source_spct
object.
## Object: source_spct [601 x 2]
## Wavelength range 300-900 nm, step 1 nm
## Label: Incandescent lamp: Generic bulb 60W ca. 1995
## Measured on 0-08-18 13:47:11 UTC
## Spectral data normalized to s.e.irrad = 1 at 900 nm (max in 300-900 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 601 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 300 0.000665
## 2 301 0.000325
## 3 302 0.000956
## 4 303 0.000702
## 5 304 0.000306
## 6 305 0.000825
## 7 306 0.00103
## 8 307 0.000361
## 9 308 0.000497
## 10 309 0.000627
## # ℹ 591 more rows
Or a character string.
## Object: source_spct [601 x 2]
## Wavelength range 300-900 nm, step 1 nm
## Label: Incandescent lamp: Generic bulb 60W ca. 1995
## Measured on 0-08-18 13:47:11 UTC
## Spectral data normalized to s.e.irrad = 1 at 900 nm (max in 300-900 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 601 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 300 0.000665
## 2 301 0.000325
## 3 302 0.000956
## 4 303 0.000702
## 5 304 0.000306
## 6 305 0.000825
## 7 306 0.00103
## 8 307 0.000361
## 9 308 0.000497
## 10 309 0.000627
## # ℹ 591 more rows
Be aware that according to R’s rules, using single square brackets
will return a source_mspct
object possibly of length one.
This statement is not equivalent to the one in the chunk immediately
above.
## Object: source_mspct [1 x 1]
## --- Member: Generic.Inc.bulb.60W ---
## Object: source_spct [601 x 2]
## Wavelength range 300-900 nm, step 1 nm
## Label: Incandescent lamp: Generic bulb 60W ca. 1995
## Measured on 0-08-18 13:47:11 UTC
## Spectral data normalized to s.e.irrad = 1 at 900 nm (max in 300-900 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 601 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 300 0.000665
## 2 301 0.000325
## 3 302 0.000956
## 4 303 0.000702
## 5 304 0.000306
## 6 305 0.000825
## 7 306 0.00103
## 8 307 0.000361
## 9 308 0.000497
## 10 309 0.000627
## # ℹ 591 more rows
##
## --- END ---
We can subset the source_mspct
object by indexing with
vectors of character strings. The package provides some predefined ones,
and users can easily define their own, either as constants or through
computation. Here we use a vector defined by the package.
## Object: source_mspct [2 x 1]
## --- Member: Toshiba.LED.12W.2700K ---
## Object: source_spct [591 x 2]
## Wavelength range 251.16-898.81 nm, step 1.023182e-12-7.56 nm
## Label: LED lamp: Toshiba 12W 2700K
## Measured on 2018-02-12 09:08:23.957523 UTC
## Spectral data normalized to s.e.irrad = 1 at 607.26 nm (max in 251.16-898.81 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 591 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 251. 0
## 2 256. 0
## 3 256. 0
## 4 257. 0
## 5 257. 0
## 6 258. 0
## 7 258. 0
## 8 259. 0
## 9 259. 0
## 10 260. 0
## # ℹ 581 more rows
## --- Member: Toshiba.LED.9.5W.2700K ---
## Object: source_spct [678 x 2]
## Wavelength range 251.29-898.97 nm, step 1.023182e-12-7.55 nm
## Label: LED lamp: Toshiba 9.5W 2700K
## Measured on 2021-09-02 19:48:00.171366 UTC
## Spectral data normalized to s.e.irrad = 1 at 605.57 nm (max in 251.29-898.97 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 678 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 251. 0
## 2 256. 0
## 3 257. 0
## 4 257. 0
## 5 257. 0
## 6 258. 0
## 7 258. 0
## 8 259. 0
## 9 259. 0
## 10 260. 0
## # ℹ 668 more rows
##
## --- END ---
And below we use a computed one. In this case we extract the member spectra with names containing the string “toshiba”. More generaly one can search for matching names within the collection of spectra.
## Object: source_mspct [2 x 1]
## --- Member: Toshiba.LED.12W.2700K ---
## Object: source_spct [591 x 2]
## Wavelength range 251.16-898.81 nm, step 1.023182e-12-7.56 nm
## Label: LED lamp: Toshiba 12W 2700K
## Measured on 2018-02-12 09:08:23.957523 UTC
## Spectral data normalized to s.e.irrad = 1 at 607.26 nm (max in 251.16-898.81 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 591 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 251. 0
## 2 256. 0
## 3 256. 0
## 4 257. 0
## 5 257. 0
## 6 258. 0
## 7 258. 0
## 8 259. 0
## 9 259. 0
## 10 260. 0
## # ℹ 581 more rows
## --- Member: Toshiba.LED.9.5W.2700K ---
## Object: source_spct [678 x 2]
## Wavelength range 251.29-898.97 nm, step 1.023182e-12-7.55 nm
## Label: LED lamp: Toshiba 9.5W 2700K
## Measured on 2021-09-02 19:48:00.171366 UTC
## Spectral data normalized to s.e.irrad = 1 at 605.57 nm (max in 251.29-898.97 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 678 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 251. 0
## 2 256. 0
## 3 257. 0
## 4 257. 0
## 5 257. 0
## 6 258. 0
## 7 258. 0
## 8 259. 0
## 9 259. 0
## 10 260. 0
## # ℹ 668 more rows
##
## --- END ---
Set algebra operations can be used with the indexing vectors as each vector describes a single property: color, brand, type, etc.
## Object: source_mspct [2 x 1]
## --- Member: Philips.FT.TLD.36W.15 ---
## Object: source_spct [601 x 2]
## Wavelength range 300-900 nm, step 1 nm
## Label: Fluorescent tube: Philips TLD 36W 15 ca. 1995
## Measured on 0-08-23 10:16:11 UTC
## Spectral data normalized to s.e.irrad = 1 at 660 nm (max in 300-900 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 601 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 300 0.000196
## 2 301 0.000959
## 3 302 0.000752
## 4 303 0.00110
## 5 304 0.00126
## 6 305 0.000885
## 7 306 0.000521
## 8 307 0.00153
## 9 308 0.000167
## 10 309 0.000493
## # ℹ 591 more rows
## --- Member: Philips.Inc.50W.spot.halogen ---
## Object: source_spct [635 x 2]
## Wavelength range 315-800 nm, step 0.1-13.2 nm
## Label: Incandescent lamp: Philips 50W spot halogen
## Measured on 2021-09-02 20:25:24.415699 UTC
## Spectral data normalized to s.e.irrad = 1 at 796.36 nm (max in 315-800 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 635 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 315 0.000587
## 2 316. 0.000430
## 3 317. 0.000782
## 4 330. 0.00297
## 5 331. 0.00293
## 6 331. 0.00323
## 7 334. 0.00414
## 8 335. 0.00403
## 9 337. 0.00463
## 10 337. 0.00534
## # ℹ 625 more rows
##
## --- END ---
## [1] "Fluorescent tube: Eiko F36T8 BLB"
## [1] "Array spectrometer, Ocean Optics Maya 2000 Pro; Bentham cosine diffuser D7H; distance unknown."
For recently measured spectra, additional information is available.
## integ. time (s): 7.2, 7.2
## total time (s): 14.4, 14.4
## counts @ peak (% of max): 72.1
## Data acquired with 'MayaPro2000' s.n. MAYP11278
## grating 'HC1', slit '010s'
## diffuser 'unknown'
## $norm.type
## [1] "max"
##
## $norm.wl
## [1] 365.09
##
## $norm.factors
## [1] 0.223867
##
## $norm.cols
## [1] "s.e.irrad"
##
## $norm.range
## [1] 251.29 898.97
The spectra are normalized, and consequently, several summaries expressed in absolute units are undefined, and trigger errors. Summaries like ratios which are not affected by normalization are allowed and valid. The data have been normalized as the measuring conditions used are not all the same, and in many cases not well characterized (e.g. distance to light source, or exact alignment of the spectrometer input optics with respect to the center of the light beam from sources).
These uncertainties in the measurment conditions are likely to have minimal effect on the shape of the spectrum when plotted. This allows us to reconstruct the spectrum at a different distance from the lamp(s) or under a different number of lamps as long as we know the irradiance for some known waveband, such as PAR.
In this section we will rescale the spectral data so that after re-scaling a given target value for a summary quantity will be true. As an example, we will rescale one spectrum so that it yields an energy irradiance of 100 W m-2 for the range 400 to 700 nm. By default the returned spectrum is not labelled as being expressed in relative units, as the expectation is that the operation is done to obtain spectral emission data that could have been measured at a target condition that we want to simulate or reconstruct.
my.spct <- fscale(lamps.mspct$Generic.Inc.bulb.60W,
range = c(400, 700),
f = e_irrad,
target = 100
)
e_irrad(my.spct, waveband(c(400,700)))
## E_range.400.700
## 100
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "total energy irradiance"
## [1] FALSE
To do the scaling based on photon irradiance, different approaches
are available to change the default. Here as above we specify the
function to use through the argument passed to f
and set a
suitable target in mol m-2 s-1. We use 300e-6 to indicate 300 umol m-2
s-1.
my.spct <- fscale(lamps.mspct$Generic.Inc.bulb.60W,
range = c(400, 700),
f = q_irrad,
target = 300e-6
)
q_irrad(my.spct, waveband(c(400,700)))
## Q_range.400.700
## 3e-04
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "total photon irradiance"
In the special case when target == 1
, the default
changes, assuming that in this case the intention is to re-express the
spectral data in relative units.
my.spct <- fscale(lamps.mspct$Generic.Inc.bulb.60W,
range = c(400, 700),
f = e_irrad,
target = 1
)
is_scaled(my.spct)
## [1] TRUE
If we want to override the defaults for tagging as scaled, we ccan
pass a suitable argument to parameter set.scaled
of
fscale()
.
In addition to scaling based of the summary calculated by a function, as shown above, it is frequent to normalize spectral data. In this case scaling is done so that spectral irradiance matches a certain value at an specific wavelength. In most cases, the wavelength used is that of the maximal spectral irradiance, and the target value is 1. These are the defaults and in this case the returned spectra are always labeled as being normalized. We use a blue fluorescent tube for this example.
## Object: source_spct [601 x 2]
## Wavelength range 300-900 nm, step 1 nm
## Label: Fluorescent tube: Philips TLD 36W 15 ca. 1995
## Measured on 0-08-23 10:16:11 UTC
## Spectral data normalized to s.e.irrad = 1 at 660 nm (max in 300-900 nm)
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [normalized]
## --
## # A tibble: 601 × 2
## w.length s.e.irrad
## <dbl> <dbl>
## 1 300 0.000196
## 2 301 0.000959
## 3 302 0.000752
## 4 303 0.00110
## 5 304 0.00126
## 6 305 0.000885
## 7 306 0.000521
## 8 307 0.00153
## 9 308 0.000167
## 10 309 0.000493
## # ℹ 591 more rows
Ratios can be calculated directly as they are not affected by normalization or linear rescaling.
## R:FR[q:q]
## 0.6606633
## attr(,"radiation.unit")
## [1] "q:q ratio"
Using autoplot()
methods for spectra defined in package
‘ggspectra’ annotated plotting are created with automatically genrateda
xis labels, annotations and decorations. The defaults can be easily
changed, please see the documentation in package ‘ggspectra’. For most
of the data included in the package, as told above, exact alignment was
not ensured and the exact distance not recorded. In such cases the data
included in the package have been normalized to 1 at the tallest peak of
emission, as can be seen in the example below.
Data for a four channel, remote controlled, LED bulb is included in
object ledsavers.mspct
.
## [1] "LED lamp: LedSavers 7.5W four channels (WRGB)."
## [1] "Array spectrometer, Ocean Optics Maya 2000 Pro; Bentham cosine diffuser D7H; distance unknown."
In this case, data are not normalized, as all spectra in the object have been measure with the lamp and entrance optics in exactly the same position, controlling emission with wireless remote controller. In the next example we see that purple is created as a mix of blue and red light.
Using the ggplot()
method for spectra from package
‘ggspectra’ plus geometries and statistics from
package ‘ggplot2’ we gain additional control on the design.
We can also plot multiple spectra. In this example we plot the pure emission from each of the four channels of the bulb.
In general it will be easiest to use methods from packages in the
‘r4photobiology’ suite for plotting and calculation of various
summaries. However, as source_mspct
is a class derived from
list
, and source_spct
is derived from
tibble::tibble
that is a partly compatible reimplementation
of data.frame
the data can be used very easily with R
functions expecting data frames as input.
## w.length s.e.irrad
## 1 251.16 0
## 2 258.75 0
## 3 266.34 0
## 4 273.92 0
## 5 278.65 0
## 6 281.50 0
Of course attach
and with
also work as
expected.
## Blue:Red[q:q]
## 0.1395062
## attr(,"radiation.unit")
## [1] "q:q ratio"
## [1] 898.81
## Blue:Red[q:q]
## 0.1395062
## attr(,"radiation.unit")
## [1] "q:q ratio"
The additional data sets can be used similarly as described above for
lamps.spct
when stored as collections. For datasets stored
in long-form an additional variable or column identifies the individual
spectra.
Object qp_uvb313_temp.spct
is a source_spct
object that contains spectra in long form for a pair of UV-B lamps
measured at 7 different air temperatures.
## Object: source_spct [6 x 3]
## containing 7 spectra in long form
## Wavelength range 290-295 nm, step 1 nm
## Label: Fluorescent tube: Q-Panel UVB313 40W at -5C to 35C
## Measured on 1997-05-19 UTC
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [W m-2 nm-1]
## --
## # A tibble: 6 × 3
## temperature w.length s.e.irrad
## <dbl> <int> <dbl>
## 1 -5 290 0
## 2 -5 291 0
## 3 -5 292 0
## 4 -5 293 0.000170
## 5 -5 294 0.000537
## 6 -5 295 0.00126
## [1] -5 0 5 10 20 30 35
Collection qp_uvb313_temp.mspct
contains the same
spectra as qp_uvb313_temp.spct
as a collection of
individual source_spct
objects.
## [1] "minus05C" "plus00C" "plus05C" "plus10C" "plus20C" "plus30C" "plus35C"
## Summary of source_mspct [7 x 1] object: qp_uvb313_temp.mspct
## # A tibble: 7 × 8
## spct.idx class dim w.length.min w.length.max colnames multiple.wl time.unit
## <chr> <chr> <chr> <int> <int> <list> <dbl> <chr>
## 1 minus05C sourc… [111… 290 400 <chr> 7 second
## 2 plus00C sourc… [111… 290 400 <chr> 7 second
## 3 plus05C sourc… [111… 290 400 <chr> 7 second
## 4 plus10C sourc… [111… 290 400 <chr> 7 second
## 5 plus20C sourc… [111… 290 400 <chr> 7 second
## 6 plus30C sourc… [111… 290 400 <chr> 7 second
## 7 plus35C sourc… [111… 290 400 <chr> 7 second
## Object: source_spct [6 x 3]
## containing 7 spectra in long form
## Wavelength range 290-295 nm, step 1 nm
## Label: Fluorescent tube: Q-Panel UVB313 40W at -5C
## Measured on 1997-05-19 UTC
## Variables:
## w.length: Wavelength [nm]
## s.e.irrad: Spectral energy irradiance [W m-2 nm-1]
## --
## # A tibble: 6 × 3
## temperature w.length s.e.irrad
## <dbl> <int> <dbl>
## 1 -5 290 0
## 2 -5 291 0
## 3 -5 292 0
## 4 -5 293 0.000170
## 5 -5 294 0.000537
## 6 -5 295 0.00126
Collection ledsavers.mspct
contains 16 spectra. Each
spectrum corresponds to a different combination of dimming settings of
the four channels in this RGBW (red, green, blue, white) lamp.
## [1] "B" "blue.green" "bluish.green" "cool.green"
## [5] "dark.orange" "fuchsia" "G" "greenish.blue"
## [9] "orange" "pink" "purple" "R"
## [13] "sand" "W" "warm.blue" "yellow"
We can plot the spectra for the individual channels by selecting them.
Collection sunwayfoto_fl96.mspct
contains 7 spectra.
Each spectrum corresponds to a different combination of dimming and
colour temperature settings of a two channel or bi-colour (warm white
and cool white) lamp sold for use in photography and video..
## [1] "3000K.100pc" "4000K.100pc" "5500K.100pc" "4000K.50pc" "4000K.25pc"
## [6] "4000K.12pc" "4000K.5pc"
## # A tibble: 7 × 2
## spct.idx what.measured
## <fct> <chr>
## 1 3000K.100pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 300…
## 2 4000K.100pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 400…
## 3 5500K.100pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 550…
## 4 4000K.50pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 400…
## 5 4000K.25pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 400…
## 6 4000K.12pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 400…
## 7 4000K.5pc LED white bi-colour video lamp: Sunwayfoto Fill Light FL96 at 400…
Collection elgato_klm_cct.mspct
contains 12 spectra.
Each spectrum corresponds to a different colour temperature setting of a
two channel or bi-colour (warm white and cool white) lamp sold for use
in photography and video. Measurements were done with dimming set at
full power.
## [1] "at.7000K.dimmed.to.100pc" "at.6500K.dimmed.to.100pc"
## [3] "at.6000K.dimmed.to.100pc" "at.5500K.dimmed.to.100pc"
## [5] "at.5000K.dimmed.to.100pc" "at.4500K.dimmed.to.100pc"
## [7] "at.4250K.dimmed.to.100pc" "at.4000K.dimmed.to.100pc"
## [9] "at.3750K.dimmed.to.100pc" "at.3500K.dimmed.to.100pc"
## [11] "at.3250K.dimmed.to.100pc" "at.2900K.dimmed.to.100pc"
## # A tibble: 12 × 2
## spct.idx what.measured
## <fct> <chr>
## 1 at.7000K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 2 at.6500K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 3 at.6000K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 4 at.5500K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 5 at.5000K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 6 at.4500K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 7 at.4250K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 8 at.4000K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 9 at.3750K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 10 at.3500K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 11 at.3250K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
## 12 at.2900K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Mi…
Collection elgato_klm_dim.mspct
contains 6 spectra. Each
spectrum corresponds to a different dimming setting of a two channel or
bi-colour (warm white and cool white) lamp sold for use in photography
and video. Measurements were done with colour temperature (CCT) set to
4000K.
## [1] "at.4000K.dimmed.to.100pc" "at.4000K.dimmed.to.50pc"
## [3] "at.4000K.dimmed.to.25pc" "at.4000K.dimmed.to.12pc"
## [5] "at.4000K.dimmed.to.6pc" "at.4000K.dimmed.to.3pc"
## # A tibble: 6 × 2
## spct.idx what.measured
## <fct> <chr>
## 1 at.4000K.dimmed.to.100pc LED white bi-colour video lamp: Elgato Key Light Min…
## 2 at.4000K.dimmed.to.50pc LED white bi-colour video lamp: Elgato Key Light Min…
## 3 at.4000K.dimmed.to.25pc LED white bi-colour video lamp: Elgato Key Light Min…
## 4 at.4000K.dimmed.to.12pc LED white bi-colour video lamp: Elgato Key Light Min…
## 5 at.4000K.dimmed.to.6pc LED white bi-colour video lamp: Elgato Key Light Min…
## 6 at.4000K.dimmed.to.3pc LED white bi-colour video lamp: Elgato Key Light Min…
Collection amaran_m9.mspct
contains 6 spectra. Each
spectrum corresponds to a different dimming setting of a single channel
(cool white) lamp sold for use in photography and video.
## [1] "dimmed.9of9" "dimmed.7of9" "dimmed.5of9" "dimmed.3of9" "dimmed.1of9"
## [6] "dimmed.0of9"
## # A tibble: 6 × 2
## spct.idx what.measured
## <fct> <chr>
## 1 dimmed.9of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 9/9 160mm
## 2 dimmed.7of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 7/9 160mm
## 3 dimmed.5of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 5/9 160mm
## 4 dimmed.3of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 3/9 160mm
## 5 dimmed.1of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 1/9 160mm
## 6 dimmed.0of9 LED cool-white video lamp: Aputure Amaran AL-M9 dimmed 0/9 160mm
Collection andoer_ir49.mspct
contains 2 spectra. Each
spectrum corresponds to a different dimming setting of a single channel
(infra-red) lamp sold for use in photography and video. This requires a
modified or special camera sensitive to near infrared radiation
(NIR)
## [1] "dimmed.100pc" "dimmed.10pc"
## # A tibble: 2 × 2
## spct.idx what.measured
## <fct> <chr>
## 1 dimmed.100pc LED IR video lamp: Andoer IR49S at max power
## 2 dimmed.10pc LED IR video lamp: Andoer IR49S at min power