
Package: photobiologySunCalc (via
r-universe)

October 24, 2024

Type Package

Title Sun and Atmosphere Calculations

Version 0.1.0

Date 2024-08-04

Description Compute the position of the sun, day and night length,
local solar time using Meeus' very accurate formulae. Estimate
air mass (AM) from solar elevation, reference
evapotranspiration, and interconvert air water content
expressed as different physical quantities.

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports stats, tibble (>= 3.1.6), lubridate (>= 1.9.0), dplyr (>=
1.0.9)

Suggests knitr (>= 1.41), rmarkdown (>= 2.18), testthat (>= 3.1.4),
roxygen2 (>= 7.2.0), lutz (>= 0.3.1), covr

LazyLoad yes

ByteCompile true

URL https://docs.r4photobiology.info/photobiologySunCalc/,

https://github.com/aphalo/photobiologySunCalc

BugReports https://github.com/aphalo/photobiologySunCalc/issues

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Repository https://aphalo.r-universe.dev

RemoteUrl https://github.com/aphalo/photobiologySunCalc

RemoteRef HEAD

RemoteSha 45aab755cf3800fdf5ea6015ad814180a08478dc

1

https://docs.r4photobiology.info/photobiologySunCalc/
https://github.com/aphalo/photobiologySunCalc
https://github.com/aphalo/photobiologySunCalc/issues

2 photobiologySunCalc-package

Contents

photobiologySunCalc-package . 2
as.solar_date . 3
as_tod . 4
day_night . 5
ET_ref . 9
format.solar_time . 11
format.tod_time . 12
irrad_extraterrestrial . 12
is.solar_time . 13
net_irradiance . 14
print.solar_time . 15
print.tod_time . 16
relative_AM . 16
solar_time . 17
sun_angles . 19
tz_time_diff . 21
validate_geocode . 22
water_vp_sat . 23

Index 27

photobiologySunCalc-package

photobiologySunCalc: Sun and Atmosphere Calculations

Description

Compute the position of the sun, day and night length, local solar time using Meeus’ very accurate
formulae. Estimate air mass (AM) from solar elevation, reference evapotranspiration, and intercon-
vert air water content expressed as different physical quantities.

Details

Please see the vignette 0: The R for Photobiology Suite for a description of the suite.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

References

Aphalo, Pedro J. (2015) The r4photobiology suite. UV4Plants Bulletin, 2015:1, 21-29. doi:10.19232/
uv4pb.2015.1.14.

https://orcid.org/0000-0003-3385-972X
https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.19232/uv4pb.2015.1.14

as.solar_date 3

See Also

Useful links:

• https://docs.r4photobiology.info/xx/

• https://github.com/aphalo/xx

• Report bugs at https://github.com/aphalo/xx/issues

Examples

daylength
sunrise_time(lubridate::today(tzone = "EET"), tz = "EET",

geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

day_length(lubridate::today(tzone = "EET"), tz = "EET",
geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

sun_angles(lubridate::now(tzone = "EET"), tz = "EET",
geocode = data.frame(lat = 60, lon = 25))

water_vp_sat(23) # 23 C -> vapour pressure in Pa

as.solar_date Convert a solar_time object into solar_date object

Description

Convert a solar_time object into solar_date object

Usage

as.solar_date(x, time)

Arguments

x solar_time object.

time an R date time object

Value

For method as.solar_date() a date-time object with the class attr set to "solar.time". This is
needed only for unambiguous formatting and printing.

See Also

Other Local solar time functions: is.solar_time(), print.solar_time(), solar_time()

https://docs.r4photobiology.info/xx/
https://github.com/aphalo/xx
https://github.com/aphalo/xx/issues

4 as_tod

as_tod Convert datetime to time-of-day

Description

Convert a datetime into a time of day expressed in hours, minutes or seconds from midnight in local
time for a time zone. This conversion is useful when time-series data for different days needs to be
compared or plotted based on the local time-of-day.

Usage

as_tod(x, unit.out = "hours", tz = NULL)

Arguments

x a datetime object accepted by lubridate functions

unit.out character string, One of "tod_time", "hours", "minutes", or "seconds".

tz character string indicating time zone to be used in output.

Value

A numeric vector of the same length as x. If unit.out = "tod_time" an object of class "tod_time"
which the same as for unit.out = "hours" but with the class attribute set, which dispatches to
special format() nad print() methods.

See Also

solar_time

Other Time of day functions: format.tod_time(), print.tod_time()

Examples

library(lubridate)
my_instants <- ymd_hms("2020-05-17 12:05:03") + days(c(0, 30))
my_instants
as_tod(my_instants)
as_tod(my_instants, unit.out = "tod_time")

day_night 5

day_night Times for sun positions

Description

Functions for calculating the timing of solar positions, given geographical coordinates and dates.
They can be also used to find the time for an arbitrary solar elevation between 90 and -90 degrees
by supplying "twilight" angle(s) as argument.

Usage

day_night(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

day_night_fast(date, tz, geocode, twilight, unit.out)

is_daytime(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

noon_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "datetime"

)

sunrise_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

sunset_time(
date = lubridate::now(tzone = "UTC"),

6 day_night

tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

day_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

night_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

Arguments

date "vector" of POSIXct times orDate objects, any valid TZ is allowed, default is
current date at Greenwich matching the default for geocode.

tz character vector indicating time zone to be used in output and to interpret Date
values passed as argument to date.

geocode data frame with one or more rows and variables lon and lat as numeric values
(degrees). If present, address will be copied to the output.

twilight character string, one of "none", "rim", "refraction", "sunlight", "civil", "nauti-
cal", "astronomical", or a numeric vector of length one, or two, giving solar
elevation angle(s) in degrees (negative if below the horizon).

unit.out character string, One of "datetime", "day", "hour", "minute", or "second".

Details

Twilight names are interpreted as follows. "none": solar elevation = 0 degrees. "rim": upper rim
of solar disk at the horizon or solar elevation = -0.53 / 2. "refraction": solar elevation = 0 degrees
+ refraction correction. "sunlight": upper rim of solar disk corrected for refraction, which is close
to the value used by the online NOAA Solar Calculator. "civil": -6 degrees, "naval": -12 degrees,
and "astronomical": -18 degrees. Unit names for output are as follows: "day", "hours", "minutes"
and "seconds" times for sunrise and sunset are returned as times-of-day since midnight expressed in
the chosen unit. "date" or "datetime" return the same times as datetime objects with TZ set (this is
much slower than "hours"). Day length and night length are returned as numeric values expressed
in hours when ‘"datetime"’ is passed as argument to unit.out. If twilight is a numeric vector of
length two, the element with index 1 is used for sunrise and that with index 2 for sunset.

day_night 7

is_daytime() supports twilight specifications by name, a test like sun_elevation() > 0 may be
used directly for a numeric angle.

Value

A tibble with variables day, tz, twilight.rise, twilight.set, longitude, latitude, address, sunrise, noon,
sunset, daylength, nightlength or the corresponding individual vectors.

is_daytime() returns a logical vector, with TRUE for day time and FALSE for night time.

noon_time, sunrise_time and sunset_time return a vector of POSIXct times

day_length and night_length return numeric a vector giving the length in hours

Warning

Be aware that R’s Date class does not save time zone metadata. This can lead to ambiguities in
the current implementation based on time instants. The argument passed to date should be of class
POSIXct, in other words an instant in time, from which the correct date will be computed based on
the tz argument.

The time zone in which times passed to date as argument are expressed does not need to be the
local one or match the geocode, however, the returned values will be in the same time zone as the
input.

Note

Function day_night() is an implementation of Meeus equations as used in NOAAs on-line web
calculator, which are very precise and valid for a very broad range of dates. For sunrise and sunset
the times are affected by refraction in the atmosphere, which does in turn depend on weather con-
ditions. The effect of refraction on the apparent position of the sun is only an estimate based on
"typical" conditions. The more tangential to the horizon is the path of the sun, the larger the effect of
refraction is on the times of visual occlusion of the sun behind the horizon—i.e. the largest timing
errors occur at high latitudes. The computation is not defined for latitudes 90 and -90 degrees, i.e.
at the poles.

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all the
same, the function signatures and which values are returned differ. In particular, the implementation
in ’photobiology’ splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates. In ’fishmethods’
(= 1.11-0) there is a bug in function astrocalc4r() that affects sunrise and sunset times. The times
returned by the functions in package ’photobiology’ have been validated against the NOAA base
implementation.

In the current implementation functions sunrise_time, noon_time, sunset_time, day_length,
night_length and is_daytime are all wrappers on day_night, so if more than one quantity is
needed it is preferable to directly call day_night and extract the different components from the
returned list.

night_length returns the length of night-time conditions in one day (00:00:00 to 23:59:59), rather
than the length of the night between two consecutive days.

8 day_night

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/
and in R paclage ’fishmethods’. In ’fishmethods’ (= 1.11-0) there is a bug in function astrocalc4r()
that affects sunrise and sunset times.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

sun_angles.

Other astronomy related functions: format.solar_time(), sun_angles()

Examples

library(lubridate)

my.geocode <- data.frame(lon = 24.93838,
lat = 60.16986,
address = "Helsinki, Finland")

day_night(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_night(ymd("2015-05-30", tz = "EET") + days(1:10),
geocode = my.geocode,
twilight = "civil")

sunrise_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

noon_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

sunset_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode,
unit.out = "day")

is_daytime(ymd("2015-05-30", tz = "EET") + hours(c(0, 6, 12, 18, 24)),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode,
twilight = "civil")

is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),
geocode = my.geocode,

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

ET_ref 9

twilight = "civil")

ET_ref Evapotranspiration

Description

Compute an estimate of reference (= potential) evapotranspiration from meteorologial data. Evap-
otranspiration from vegetation includes transpiraction by plants plus evaporation from the soil or
other wet surfaces. ET0 is the reference value assuming no limitation to transpiration due to soil
water, similar to potential evapotranspiration (PET). An actual evapotranpiration value ET can be
estimated only if additional information on the plants and soil is available.

Usage

ET_ref(
temperature,
water.vp,
wind.speed,
net.irradiance,
nighttime = FALSE,
atmospheric.pressure = 10.13,
soil.heat.flux = 0,
method = "FAO.PM",
check.range = TRUE

)

ET_ref_day(
temperature,
water.vp,
wind.speed,
net.radiation,
atmospheric.pressure = 10.13,
soil.heat.flux = 0,
method = "FAO.PM",
check.range = TRUE

)

Arguments

temperature numeric vector of air temperatures (C) at 2 m height.

water.vp numeric vector of water vapour pressure in air (Pa).

wind.speed numeric Wind speed (m/s) at 2 m height.

net.irradiance numeric Long wave and short wave balance (W/m2).

10 ET_ref

nighttime logical Used only for methods that distinguish between daytime- and nighttime
canopy conductances.

atmospheric.pressure

numeric Atmospheric pressure (Pa).

soil.heat.flux numeric Soil heat flux (W/m2), positive if soil temperature is increasing.

method character The name of an estimation method.

check.range logical Flag indicating whether to check or not that arguments for temperature
are within range of method. Passed to function calls to water_vp_sat() and
water_vp_sat_slope().

net.radiation numeric Long wave and short wave balance (J/m2/day).

Details

Currently three methods, based on the Penmann-Monteith equation formulated as recommended by
FAO56 (Allen et al., 1998) as well as modified in 2005 for tall and short vegetation according to
ASCE-EWRI are implemented in function ET_ref(). The computations rely on data measured ac-
cording WHO standards at 2 m above ground level to estimate reference evapotranspiration (ET0).
The formulations are those for ET expressed in mm/h, but modified to use as input flux rates in
W/m2 and pressures expressed in Pa.

Value

A numeric vector of reference evapotranspiration estimates expressed in mm/h for ET_ref() and
ET_PM() and in mm/d for ET_ref_day().

References

Allen R G, Pereira L S, Raes D, Smith M. 1998. Crop evapotranspiration: Guidelines for computing
crop water requirements. Rome: FAO. Allen R G, Pruitt W O, Wright J L, Howell T A, Ventura
F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry J, et al. 2006. A recommendation on
standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-
Monteith method. Agricultural Water Management 81.

See Also

Other Evapotranspiration and energy balance related functions.: net_irradiance()

Examples

instantaneous
ET_ref(temperature = 20,

water.vp = water_RH2vp(relative.humidity = 70,
temperature = 20),

wind.speed = 0,
net.irradiance = 10)

ET_ref(temperature = c(5, 20, 35),
water.vp = water_RH2vp(70, c(5, 20, 35)),
wind.speed = 0,

format.solar_time 11

net.irradiance = 10)

Hot and dry air
ET_ref(temperature = 35,

water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400)

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "FAO.PM")

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "ASCE.PM.short")

ET_ref(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.irradiance = 400,
method = "ASCE.PM.tall")

Low temperature and high humidity
ET_ref(temperature = 5,

water.vp = water_RH2vp(95, 5),
wind.speed = 0.5,
net.irradiance = -10,
nighttime = TRUE,
method = "ASCE.PM.short")

ET_ref_day(temperature = 35,
water.vp = water_RH2vp(10, 35),
wind.speed = 5,
net.radiation = 35e6) # 35 MJ / d / m2

format.solar_time Encode in a Common Format

Description

Format a solar_time object for pretty printing

Usage

S3 method for class 'solar_time'
format(x, ..., sep = ":")

12 irrad_extraterrestrial

Arguments

x an R object

... ignored

sep character used as separator

See Also

Other astronomy related functions: day_night(), sun_angles()

format.tod_time Encode in a Common Format

Description

Format a tod_time object for pretty printing

Usage

S3 method for class 'tod_time'
format(x, ..., sep = ":")

Arguments

x an R object

... ignored

sep character used as separator

See Also

Other Time of day functions: as_tod(), print.tod_time()

irrad_extraterrestrial

Extraterrestrial irradiance

Description

Estimate of down-welling solar (short wave) irradiance at the top of the atmosphere above a location
on Earth, computed based on angles, Sun-Earth distance and the solar constant. Astronomical
computations are done with function sun_angles().

is.solar_time 13

Usage

irrad_extraterrestrial(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
solar.constant = "NASA"

)

Arguments

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

solar.constant numeric or character If character, "WMO" or "NASA", if numeric, an irradiance
value in the same units as the value to be returned.

Value

Numeric vector of extraterrestrial irradiance (in W / m2 if solar constant is a character value).

See Also

Function sun_angles.

Examples

library(lubridate)

irrad_extraterrestrial(ymd_hm("2021-06-21 12:00", tz = "UTC"))

irrad_extraterrestrial(ymd_hm("2021-12-21 20:00", tz = "UTC"))

irrad_extraterrestrial(ymd_hm("2021-06-21 00:00", tz = "UTC") + hours(1:23))

is.solar_time Query class

Description

Query class

14 net_irradiance

Usage

is.solar_time(x)

is.solar_date(x)

Arguments

x an R object.

See Also

Other Local solar time functions: as.solar_date(), print.solar_time(), solar_time()

net_irradiance Net radiation flux

Description

Estimate net radiation balance expressed as a flux in W/m2. If lw.down.irradiance is passed a
value in W / m2 the difference is computed directly and if not an approximate value is estimated,
using R_rel = 0.75 which corresponds to clear sky, i.e., uncorrected for cloudiness. This is the
approach to estimation is that recommended by FAO for hourly estimates while here we use it for
instantaneous or mean flux rates.

Usage

net_irradiance(
temperature,
sw.down.irradiance,
lw.down.irradiance = NULL,
sw.albedo = 0.23,
lw.emissivity = 0.98,
water.vp = 0,
R_rel = 1

)

Arguments

temperature numeric vector of air temperatures (C) at 2 m height.
sw.down.irradiance, lw.down.irradiance

numeric Down-welling short wave and long wave radiation radiation (W/m2).
sw.albedo numeric Albedo as a fraction of one (/1).
lw.emissivity numeric Emissivity of the surface (ground or vegetation) for long wave radia-

tion.
water.vp numeric vector of water vapour pressure in air (Pa), ignored if lw.down.irradiance

is available.
R_rel numeric The ratio of actual and clear sky short wave irradiance (/1).

print.solar_time 15

Value

A numeric vector of evapotranspiration estimates expressed as W / m-2.

See Also

Other Evapotranspiration and energy balance related functions.: ET_ref()

print.solar_time Print solar time and solar date objects

Description

Print solar time and solar date objects

Usage

S3 method for class 'solar_time'
print(x, ...)

S3 method for class 'solar_date'
print(x, ...)

Arguments

x an R object

... passed to format method

Note

Default is to print the underlying POSIXct as a solar time.

See Also

Other Local solar time functions: as.solar_date(), is.solar_time(), solar_time()

16 relative_AM

print.tod_time Print time-of-day objects

Description

Print time-of-day objects

Usage

S3 method for class 'tod_time'
print(x, ...)

Arguments

x an R object

... passed to format method

Note

Default is to print the underlying numeric vector as a solar time.

See Also

Other Time of day functions: as_tod(), format.tod_time()

relative_AM Relative Air Mass (AM)

Description

Approximate relative air mass (AM) from sun elevation or sun zenith angle.

Usage

relative_AM(elevation.angle = NULL, zenith.angle = NULL, occluded.value = NA)

Arguments

elevation.angle, zenith.angle
numeric vector Angle in degrees for the sun position. An argument should be
passed to one and only one of elevation_angle or zenith_angle.

occluded.value numeric Value to return when elevation angle is negative (sun below the hori-
zon).

solar_time 17

Details

This is an implementation of equation (3) in Kasten and Young (1989). This equation is only an
approximation to the tabulated values in the same paper. Returned values are rounded to three
significant digits.

Note

Although relative air mass is not defined when the sun is not visible, returning a value different
from the default NA might be useful in some cases.

References

F. Kasten, A. T. Young (1989) Revised optical air mass tables and approximation formula. Applied
Optics, 28, 4735-. doi:10.1364/ao.28.004735.

Examples

relative_AM(c(90, 60, 30, 1, -10))
relative_AM(c(90, 60, 30, 1, -10), occluded.value = Inf)
relative_AM(zenith.angle = 0)

solar_time Local solar time

Description

solar_time() computes the time of day expressed in seconds since the astronomical midnight
using and instant in time and a geocode as input. Solar time is useful when we want to plot data
according to the local solar time rather than the local time in use at a time zone. How the returned
instant in time is expressed depends on the argument passed to unit.out.

Usage

solar_time(
time = lubridate::now(),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
unit.out = "time"

)

Arguments

time POSIXct Time, any valid time zone (TZ) is allowed, default is current time

geocode data frame with variables lon and lat as numeric values (degrees).

unit.out character string, One of "datetime", "time", "hour", "minute", or "second".

18 solar_time

Details

Solar time is determined by the position of the sun in the sky and it almost always differs from the
time expressed in the local time coordinates in use. The differences can vary from a few minutes
up to a couple of hours depending on the exact location within the time zone and the use or not of
daylight saving time.

Value

In all cases solar time is expressed as time since local astronomical midnight and, thus, lacks date
information. If unit.out = "time", a numeric value in seconds with an additional class attribute
"solar_time"; if unit.out = "datetime", a "POSIXct" value in seconds from midnight but with an
additional class attribute "solar_date"; if unit.out = "hour" or unit.out = "minute" or unit.out
= "second", a numeric value.

Warning!

Returned values are computed based on the time zone of the argument for parameter time. In the
case of solar time, this timezone does not affect the result. However, in the case of solar dates the
date part may be off by one day, if the time zone does not match the coordinates of the geocode
value provided as argument.

Note

The algorithm is approximate, it calculates the difference between local solar noon and noon in the
time zone of time and uses this value for the whole day when converting times into solar time.
Days are not exactly 24 h long. Between successive days the shift is only a few seconds, and this
leads to a small jump at midnight.

See Also

as_tod

Other Local solar time functions: as.solar_date(), is.solar_time(), print.solar_time()

Examples

BA.geocode <-
data.frame(lon = -58.38156, lat = -34.60368, address = "Buenos Aires, Argentina")

sol_t <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),
BA.geocode)

sol_t
class(sol_t)

sol_d <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),
BA.geocode,
unit.out = "datetime")

sol_d
class(sol_d)

sun_angles 19

sun_angles Solar angles

Description

Function sun_angles() returns the solar angles and Sun to Earth relative distance for given times
and locations using a very precise algorithm. Convenience functions sun_azimuth(), sun_elevation(),
sun_zenith_angle() and distance_to_sun() are wrappers on sun_angles() that return indi-
vidual vectors.

Usage

sun_angles(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_angles_fast(time, tz, geocode, use.refraction)

sun_elevation(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_zenith_angle(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_azimuth(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

distance_to_sun(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

20 sun_angles

)

Arguments

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

use.refraction logical Flag indicating whether to correct for fraction in the atmosphere.

Details

This function is an implementation of Meeus equations as used in NOAAs on-line web calculator,
which are precise and valid for a very broad range of dates (years -1000 to 3000 at least). The
apparent solar elevations near sunrise and sunset are affected by refraction in the atmosphere, which
does in turn depend on weather conditions. The effect of refraction on the apparent position of the
sun is only an estimate based on "typical" conditions for the atmosphere. The computation is not
defined for latitudes 90 and -90 degrees, i.e. exactly at the poles. The function is vectorized and in
particular passing a vector of times for a single geocode enhances performance very much as the
equation of time, the most time consuming step, is computed only once.

For improved performance, if more than one angle is needed it is preferable to directly call sun_angles
instead of the wrapper functions as this avoids the unnecesary recalculation.

Value

A data.frame with variables time (in same TZ as input), TZ, solartime, longitude, latitude,
address, azimuth, elevation, declination, eq.of.time, hour.angle, and distance. If a data
frame with multiple rows is passed to geocode and a vector of times longer than one is passed to
time, sun position for all combinations of locations and times are returned by sun_angles. Angles
are expressed in degrees, solartime is a vector of class "solar.time", distance is expressed in
relative sun units.

Important!

Given an instant in time and a time zone, the date is computed from these, and may differ by one day
to that at the location pointed by geocode at the same instant in time, unless the argument passed
to tz matches the time zone at this location.

Note

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all
the same, the function signatures and which values are returned differ. In particular, the present
implementation splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates.

tz_time_diff 21

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

Other astronomy related functions: day_night(), format.solar_time()

Examples

library(lubridate)
sun_angles()
sun_azimuth()
sun_elevation()
sun_zenith_angle()
sun_angles(ymd_hms("2014-09-23 12:00:00"))
sun_angles(ymd_hms("2014-09-23 12:00:00"),

geocode = data.frame(lat=60, lon=0))
sun_angles(ymd_hms("2014-09-23 12:00:00") + minutes((0:6) * 10))

tz_time_diff Time difference between two time zones

Description

Returns the difference in local time expressed in hours between two time zones at a given instant in
time. The difference due to daylight saving time or Summer and Winter time as well as historical
changes in time zones are taken into account.

Usage

tz_time_diff(
when = lubridate::now(),
tz.target = lubridate::tz(when),
tz.reference = "UTC"

)

Arguments

when datetime A time instant
tz.target, tz.reference

character Two time zones using names recognized by functions from package
’lubridate’

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

22 validate_geocode

Value

A numeric value.

Note

This function is implemented using functions from package ’lubridate’. For details on the handling
of time zones, please, consult the documentation for Sys.timezone about system differences in
time zone names and handling.

validate_geocode Validate a geocode

Description

Test validity of a geocode or ensure that a geocode is valid.

Usage

validate_geocode(geocode)

is_valid_geocode(geocode)

length_geocode(geocode)

na_geocode()

Arguments

geocode data.frame with geocode data in columns "lat", "lon", and possibly also "address".

Details

validate_geocode Converts to tibble, checks data bounds, converts address to character if it is not
already a character vector, or add character NAs if the address column is missing.

is_valid_geocode Checks if a geocode is valid, returning 0L if not, and the number of row other-
wise.

Value

A valid geocode stored in a tibble.

FALSE for invalid, TRUE for valid.

FALSE for invalid, number of rows for valid.

A geo_code tibble with all fields set to suitable NAs.

water_vp_sat 23

Examples

validate_geocode(NA)
validate_geocode(data.frame(lon = -25, lat = 66))

is_valid_geocode(NA)
is_valid_geocode(1L)
is_valid_geocode(data.frame(lon = -25, lat = 66))

na_geocode()

water_vp_sat Water vapour pressure

Description

Approximate water pressure in air as a function of temperature, and its inverse the calculation of
dewpoint.

Usage

water_vp_sat(
temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE

)

water_dp(water.vp, over.ice = FALSE, method = "tetens", check.range = TRUE)

water_fp(water.vp, over.ice = TRUE, method = "tetens", check.range = TRUE)

water_vp2mvc(water.vp, temperature)

water_mvc2vp(water.mvc, temperature)

water_vp2RH(
water.vp,
temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE

)

water_RH2vp(
relative.humidity,

24 water_vp_sat

temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE

)

water_vp_sat_slope(
temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE,
temperature.step = 0.1

)

psychrometric_constant(atmospheric.pressure = 101325)

Arguments

temperature numeric vector of air temperatures (C).

over.ice logical vector Is the estimate for equilibrium with liquid water or with ice.

method character Currently "tetens", modified "magnus", "wexler" and "goff.gratch"
equations are supported.

check.range logical Flag indicating whether to check or not that arguments for temperature
are within the range of validity of the method used.

water.vp numeric vector of water vapour pressure in air (Pa).

water.mvc numeric vector of water vapour concnetration as mass per volume (gm−3).

pc logical flag for result returned as percent or not.
relative.humidity

numeric Relative humidity as fraction of 1.
temperature.step

numeric Delta or step used to estimate the slope as a finite difference (C).
atmospheric.pressure

numeric Atmospheric pressure (Pa).

Details

Function water_vp_sat() provides implementations of several well known equations for the esti-
mation of saturation vapor pressure in air. Functions water_dp() and water_fp() use the inverse
of these equations to compute the dew point or frost point from water vapour pressure in air. The
inverse functions are either analytical solutions or fitted approximations. None of these functions
are solved numerically by iteration.

Method "tetens" implements Tetens’ (1930) equation for the cases of equilibrium with a water
and an ice surface. Method "magnus" implements the modified Magnus equations of Alduchov and
Eskridge (1996, eqs. 21 and 23). Method "wexler" implements the equations proposed by Wexler
(1976, 1977), and their inverse according to Hardy (1998). Method "goff.gratch" implements
the equations of Groff and Gratch (1946) with the minor updates of Groff (1956).

water_vp_sat 25

The equations are approximations, and in spite of their different names, Tetens’ and Magnus’ equa-
tions have the same form with the only difference in the values of the parameters. However, the
modified Magnus equation is more accurate as Tetens equation suffers from some bias errors at ex-
treme low temperatures (< -40 C). In contrast Magnus equations with recently fitted values for the
parameters are usable for temperatures from -80 C to +50 C over water and -80 C to 0 C over ice.
The Groff Gratch equation is more complex and is frequently used as a reference in comparison as
it is considered reliable over a broad range of temperatures. Wexler’s equations are computationally
simpler and fitted to relatively recent data. There is little difference at temperatures in the range -20
C to +50 C, and differences become large at extreme temperatures. Temperatures outside the range
where estimations are highly reliable for each equation return NA, unless extrapolation is enabled by
passing FALSE as argument to parameter check.range.

The switch between equations for ice or water cannot be based on air temperature, as it depends on
the presence or not of a surface of liquid water. It must be set by passing an argument to parameter
over.ice which defaults to FALSE.

Tetens equation is still very frequently used, and is for example the one recommended by FAO for
computing potential evapotranspiration. For this reason it is used as default here.

Value

A numeric vector of partial pressures in pascal (Pa) for water_vp_sat() and water_mvc2vp(), a
numeric vector of dew point temperatures (C) for water_dp() and numeric vector of mass per vol-
ume concentrations (gm−3) for water_vp2mvc(). water_vp_sat() and psychrometric_constant()
both return numeric vectors of pressure per degree of temperature (PaC−1)

Note

The inverse of the Groff Gratch equation has yet to be implemented.

References

Tetens, O., 1930. Uber einige meteorologische Begriffe. Zeitschrift fur Geophysik, Vol. 6:297.

Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 F, in Trans-
actions of the American Society of Heating and Ventilating Engineers, pp 95-122, presented at the
52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York,
1946.

Wexler, A. (1976) Vapor Pressure Formulation for Water in Range 0 to 100°C. A Revision, Journal
of Research ofthe National Bureau of Standards: A. Physics and Chemistry, September-December
1976, Vol. 80A, Nos.5 and 6, 775-785

Wexler, A., (1977) Vapor Pressure Formulation for Ice, Journal of Research of the National Bureau
of Standards - A. Physics and Chemistry, Vol. 81A, No. 1, 5-19

Alduchov, O. A., Eskridge, R. E., 1996. Improved Magnus Form Approximation of Saturation
Vapor Pressure. Journal of Applied Meteorology, 35: 601-609 .

Hardy, Bob (1998) ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint tem-
perature, andenhancement factors in the range -100 TO +100 C. The Proceedings of the Third
International Symposium on Humidity & Moisture, Teddington, London, England, April 1998.
https://www.decatur.de/javascript/dew/resources/its90formulas.pdf

https://www.decatur.de/javascript/dew/resources/its90formulas.pdf

26 water_vp_sat

Monteith, J., Unsworth, M. (2008) Principles of Environmental Physics. Academic Press, Amster-
dam.

Allen R G, Pereira L S, Raes D, Smith M. (1998) Crop evapotranspiration: Guidelines for comput-
ing crop water requirements. FAO Irrigation and drainage paper 56. Rome: FAO.

[Equations describing the physical properties of moist air](http://www.conservationphysics.org/atmcalc/atmoclc2.pdf)

Examples

water_vp_sat(20) # C -> Pa
water_vp_sat(temperature = c(0, 10, 20, 30, 40)) # C -> Pa
water_vp_sat(temperature = -10) # over water!!
water_vp_sat(temperature = -10, over.ice = TRUE)
water_vp_sat(temperature = 20) / 100 # C -> mbar

water_vp_sat(temperature = 20, method = "magnus") # C -> Pa
water_vp_sat(temperature = 20, method = "tetens") # C -> Pa
water_vp_sat(temperature = 20, method = "wexler") # C -> Pa
water_vp_sat(temperature = 20, method = "goff.gratch") # C -> Pa

water_vp_sat(temperature = -20, over.ice = TRUE, method = "magnus") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "tetens") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "wexler") # C -> Pa
water_vp_sat(temperature = -20, over.ice = TRUE, method = "goff.gratch") # C -> Pa

water_dp(water.vp = 1000) # Pa -> C
water_dp(water.vp = 1000, method = "magnus") # Pa -> C
water_dp(water.vp = 1000, method = "wexler") # Pa -> C
water_dp(water.vp = 500, over.ice = TRUE) # Pa -> C
water_dp(water.vp = 500, method = "wexler", over.ice = TRUE) # Pa -> C

water_fp(water.vp = 300) # Pa -> C
water_dp(water.vp = 300, over.ice = TRUE) # Pa -> C

water_vp2RH(water.vp = 1500, temperature = 20) # Pa, C -> RH %
water_vp2RH(water.vp = 1500, temperature = c(20, 30)) # Pa, C -> RH %
water_vp2RH(water.vp = c(600, 1500), temperature = 20) # Pa, C -> RH %

water_vp2mvc(water.vp = 1000, temperature = 20) # Pa -> g m-3

water_mvc2vp(water.mvc = 30, temperature = 40) # g m-3 -> Pa

water_dp(water.vp = water_mvc2vp(water.mvc = 10, temperature = 30)) # g m-3 -> C

water_vp_sat_slope(temperature = 20) # C -> Pa / C

psychrometric_constant(atmospheric.pressure = 81.8e3) # Pa -> Pa / C

Index

∗ Evapotranspiration and energy balance
related functions.

ET_ref, 9
net_irradiance, 14

∗ Local solar time functions
as.solar_date, 3
is.solar_time, 13
print.solar_time, 15
solar_time, 17

∗ Time of day functions
as_tod, 4
format.tod_time, 12
print.tod_time, 16

∗ astronomy related functions
day_night, 5
format.solar_time, 11
sun_angles, 19

as.solar_date, 3, 14, 15, 18
as_tod, 4, 12, 16, 18

day_length (day_night), 5
day_night, 5, 12, 21
day_night_fast (day_night), 5
distance_to_sun (sun_angles), 19

ET_ref, 9, 15
ET_ref_day (ET_ref), 9

format.solar_time, 8, 11, 21
format.tod_time, 4, 12, 16

irrad_extraterrestrial, 12
is.solar_date (is.solar_time), 13
is.solar_time, 3, 13, 15, 18
is_daytime (day_night), 5
is_valid_geocode (validate_geocode), 22

length_geocode (validate_geocode), 22

na_geocode (validate_geocode), 22

net_irradiance, 10, 14
night_length (day_night), 5
noon_time (day_night), 5

photobiologySunCalc
(photobiologySunCalc-package),
2

photobiologySunCalc-package, 2
print.solar_date (print.solar_time), 15
print.solar_time, 3, 14, 15, 18
print.tod_time, 4, 12, 16
psychrometric_constant (water_vp_sat),

23

relative_AM, 16

solar_time, 3, 4, 14, 15, 17
sun_angles, 8, 12, 13, 19
sun_angles_fast (sun_angles), 19
sun_azimuth (sun_angles), 19
sun_elevation (sun_angles), 19
sun_zenith_angle (sun_angles), 19
sunrise_time (day_night), 5
sunset_time (day_night), 5
Sys.timezone, 22

tz_time_diff, 21

validate_geocode, 22

water_dp (water_vp_sat), 23
water_fp (water_vp_sat), 23
water_mvc2vp (water_vp_sat), 23
water_RH2vp (water_vp_sat), 23
water_vp2mvc (water_vp_sat), 23
water_vp2RH (water_vp_sat), 23
water_vp_sat, 23
water_vp_sat_slope (water_vp_sat), 23

27

	photobiologySunCalc-package
	as.solar_date
	as_tod
	day_night
	ET_ref
	format.solar_time
	format.tod_time
	irrad_extraterrestrial
	is.solar_time
	net_irradiance
	print.solar_time
	print.tod_time
	relative_AM
	solar_time
	sun_angles
	tz_time_diff
	validate_geocode
	water_vp_sat
	Index

